#))0LICH

FORSCHUNGSZENTRUM

OpenACC CUDA
Interoperability

OpenACC Course 2016

Andreas Herten, Forschungszentrum Jiilich, 24 October 2016

Contents ’J JULICH

OpenACC iS a team p[ayer! FORSCHUNGSZENTRUM

= OpenACC can interplay with
CUDA

= OpenACC can interplay with
GPU-enabled libraries

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #2]25

Contents 0 JULICH

OpenACC is a team player! FORSCHUNGSZENTRUM
Motivation
= OpenACC can interplay with The Keyword
CUDA Tasks
= OpenACC can interplay with Ias:: ;
GPU-enabled libraries as
Task 3
Task 4

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #2]25

Motivation ’J JULICH

FORSCHUNGSZENTRUM

Usually, three reasons for mixing OpenACC with others
Libraries!

— Alot of hard problems have already been solved by others
— Make use of this!

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #3]25

Motivation 0 JULICH

FORSCHUNGSZENTRUM

Usually, three reasons for mixing OpenACC with others
Libraries!
— Alot of hard problems have already been solved by others
— Make use of this!
Existing environment

— You build up on other’s work

— Part of code is already ported (e.g. with CUDA), the rest should
follow

— OpenACC is a good first step in porting, CUDA a possible next

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #3]25

Motivation 0 JULICH

FORSCHUNGSZENTRUM

Usually, three reasons for mixing OpenACC with others
Libraries!
— Alot of hard problems have already been solved by others
— Make use of this!
Existing environment

— You build up on other’s work

— Part of code is already ported (e.g. with CUDA), the rest should
follow

— OpenACC is a good first step in porting, CUDA a possible next

OpenACC coverage

— Sometimes, OpenACC does not support specific part needed (very
well)
— Sometimes, more fine-grained manipulation needed

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #3]25

The Keyword g JULICH

FORSCHUNGSZENTRUM
OpenACC’s Rosetta Stone

host data use_device

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #4]25

The Keyword 0 JULICH

FORSCHUNGSZENTRUM
OpenACC’s Rosetta Stone

host data use_device

= Background
— GPU and CPU are different devices, have different memory
— Distinct address spaces
= OpenACC hides handling of addresses from user
— For every chunk of accelerated data, two addresses exist
— One for CPU data, one for GPU data
— OpenACC uses appropriate address in accelerated kernel
= But: Automatic handling not working when out of OpenACC
(OpenACC will default to host address)

— host_data use_device usesthe address of the GPU device data
for scope

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #4]25

5
2

The host_data Construct !) JULICH

C FORSCHUNGSZENTRUM

= Usage:
double* foo = new double[N]; // foo on Host
#pragma acc data copyin(foo[0:N]) // foo on Device
{
#pragma acc host_data use_device(foo)
some_1func(foo); // Device: OK!
}

= Directive can be used for structured block as well

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #5]25

5
2

The host_data Construct g JULICH

FORSCHUNGSZENTRUM
Fortran

= Usage example

real(8) :: foo(N) ! foo on Host
!Sacc data copyin(foo) ! foo on Device

!'Sacc host_data use_device(foo)
call some_func(foo); ! Device: OK!

!'Sacc end host_data

!'Sacc end data

= Directive can be used for structured block as well

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #5]25

The Inverse: deviceptr 0 JULICH

. . FORSCHUNGSZENTRUM
When CUDA is involved

= Fortheinverse case:
— Data has been copied by CUDA or a CUDA-using library
— Pointer to data residing on devices is returned
— Use this data in OpenACC context

= deviceptr clause declares data to be on device

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #6]25

The Inverse: deviceptr ’J JULICH

. . FORSCHUNGSZENTRUM
When CUDA is involved

= Fortheinverse case:
— Data has been copied by CUDA or a CUDA-using library
— Pointer to data residing on devices is returned
— Use this data in OpenACC context
= deviceptr clause declares data to be on device
= Usage (C):
float * n;
int n = 4223;
cudaMalloc((void**)&x,(size_t)n*sizeof(float));
/) ...
#pragma acc kernels deviceptr(x)
for (int 1 = 0; 1 < n; i++) {
x[i] = 1i;

}

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #6]25

The Inverse: deviceptr ’J JULICH

. . FORSCHUNGSZENTRUM
When CUDA is involved

= Fortheinverse case:
— Data has been copied by CUDA or a CUDA-using library
— Pointer to data residing on devices is returned
— Use this data in OpenACC context

= deviceptr clause declares data to be on device

= Usage (Fortran):

integer, parameter :: n = 4223
real, device, dimension(N) :: x ! automatically on device
integer :: i
/] ...
!Sacc kernels deviceptr(x)
5 do i=1, n
: x(1) = 1
end do

!'Sacc end kernels

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #6]25

#))0LICH

FORSCHUNGSZENTRUM

Tasks

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #7]25

#))0LICH

FORSCHUNGSZENTRUM

Tasks

Task 1

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #8]25

Task 1 #) J0LICH

. FORSCHUNGSZENTRUM
Introduction to BLAS

= Use case: Anything linear algebra
= BLAS: Basic Linear Algebra Subprograms

— Vector-vector, vector-matrix, matrix-matrix operations
— Specification of routines

— Examples: SAXPY, DGEMV, ZGEMM

— http://www.netlib.org/blas/

= CcuBLAS: NVIDIA’s linear algebra routines with BLAS interface,
readily accelerated
— http://docs.nvidia.com/cuda/cublas/

= Task 1: Use cuBLAS for vector addition, everything else with
OpenACC

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #9]25

http://www.netlib.org/blas/
http://docs.nvidia.com/cuda/cublas/

Task 1 #) J0LICH

CUBLAS OpenACC Interaction oo

= cuBLAS routine used:

cublasDaxpy(cublasHandle_t handle, int n,

const double *alpha,
const double *X, int incx,
double xy, int incy)

= handle capsules GPU auxiliary data, needs to be created and
destroyed with cublasCreate and cublasDestroy

= xand vy pointto addresses on device!
= cuBLAS library needs to be linked with -1cublas

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #10[25

Task 1 0 JULICH
cuBLAS on Fortran FORSCHUNGSZENTRUM

= PGl offers bindings to cuBLAS out of the box

integer(4) function cublasdaxpy_v2(h, n, a, x, incx, y, incy)
type(cublasHandle) :: h

integer :: n

real(8) :: a

real(8), device, dimension(*) :: x, vy
integer :: incx, incy

= Usage: use cublasincode;add -Mcuda -Lcublas during compilation
= Notes
— Legacy (vI) cuBLAS bindings (no handle) also available,i.e. cublasdaxpy()
— PGI’s Fortran allows to omit host_data use_device, but not recommended
— Module openacc_cublas exists, specifically designed for usage with
OpenACC (no need for host_data use_device)
= Both not part of training

— https://www.pgroup.com/doc/pgicudaint.pdf

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #11]25

https://www.pgroup.com/doc/pgicudaint.pdf

Task 1 #) J0LICH

Vector Addition with cuBLAS e

= Location of code: Interoperability/tasks/{C,Fortran}/taskil

= Parts of task:
Go through vecAddRed. {c,F03}, work on TODOs

— Usehost_data use_device to provide correct pointer
— Check cuBLAS documentation for details on cublasDaxpy()

= Compile with make

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #12[25

http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-axpy

Task 1 #) J0LICH

Vector Addition with cuBLAS e

= Location of code: Interoperability/tasks/{C,Fortran}/taskil

= Parts of task:
Go through vecAddRed. {c,F03}, work on TODOs

— Usehost_data use_device to provide correct pointer
— Check cuBLAS documentation for details on cublasDaxpy()

= Compile with make

JURECA Getting Started

module load PGI CUDA

salloc --reservation=openacc --partition=gpus --nodes=1 --time=1:30:00
— --gres=meml128,gpu:4

make

srun ./vecAddRed.bin

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #12[25

http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-axpy

#))0LICH

FORSCHUNGSZENTRUM

Tasks

Task 2

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #1325

Task 2 #) J0LICH

FORSCHUNGSZENTRUM
CUDA Need-to-Know

= Use case:

— Working on legacy code
— Need the raw power (/flexibility) of CUDA

= CUDA need-to-knows:

— Thread — Block — Grid
Total number of threads should map to your problem; threads are
alway given per block

— Akernelis called from every thread on GPU device
Number of kernel threads: triple chevron syntax
kernel<<<nBlocks, nThreads>>>(argl, arg2, ...)

— Kernel: Function with __global__ prefix

Aware of its index by global variables, e.g. threadIdx.x
— http://docs.nvidia.com/cuda/

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #14(25

http://docs.nvidia.com/cuda/

Task 2 #) J0LICH

Vector Addition with CUDA Kernel: C o

= Task 2: Use a CUDA kernel for vector addition, everything else with
OpenACC

= Location of code: Interoperability/tasks/C/task?2
= Marrying CUDA C and OpenACC:

— All direct CUDA interaction wrapped in wrapper file cudawrapper. cu,
compiled with nvcc to object file (-c)
— vecAddRed. c calls external function from cudaWrapper.cu (extern)

< vecAddRed.c:main() — cudaWrapper.cu:cudaVecAddWrapper() —
cudaWrapper.cu:cudaVecAdd() — CUDA

= Parts of task:
Go through vecAddRed.c and cublasWrapper.cu, work on TODOs
— Usehost_data use_device to provide correct pointer
— Implement computation in kernel, implement call of kernel

= Again, use make to compile

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #15(25

Task 2 #) J0LICH

Vector Addition with CUDA Kernel: Fortran o

= Task 2: Use a CUDA kernel for vector addition, everything else with
OpenACC

= Location of code: Interoperability/tasks/Fortran/task2
= Marrying CUDA Fortran and OpenACC:

— No need to use wrappers!
— OpenACC and CUDA Fortran directly supported in same source
— Having a dedicated module file could make sense anyway
= Parts of task:
Go through vecAddRed.F03 and work on TODOs
— Usehost_data use_device to provide correct pointer
— Implement computation in kernel, implement call of kernel

= Again, use make to compile

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #15(25

#))0LICH

FORSCHUNGSZENTRUM

Tasks

Task 3

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #1625

Task 3 #) J0LICH

Vector Addition with Thrust: C o

= Thrust

— Template library for CUDA C/C++ (similar to STL)

— Offers many pre-made algorithms for popular computing tasks

— Usually works with C++ iterators, but understands C arrays as well
— http://thrust.github.io/

= Task 3: Use Thrust for reduction, everything else of vector
addition with OpenACC
= Location of code: Interoperability/tasks/C/task3

= Parts of task:
Go through vecAddRed. c and thrustWrapper. cu, work on TODOs

— Usehost_data use_device to provide correct pointer
— Implement callto thrust::reduceusing c_ptr

= Use make for compilation

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #17(25

http://thrust.github.io/

Task 3 #) J0LICH

g . ORSCI GS.
Vector Addition with Thrust: Fortran o

= Thrust
— Template library for CUDA C/C++ (similar to STL)
— Offers many pre-made algorithms for popular computing tasks
— Usually works with C++ iterators, but understands C arrays as well
— http://thrust.github.io/

= Task 3: Use Thrust for reduction, everything else of vector
addition with OpenACC

= Location of code Interoperability/tasks/Fortran/task3

= Parts of task:
Go through vecAddRed.F@9, thrustWrapper.cu and
fortranthrust.F03, work on TODOs

— Thrust used via ISO_C_BINDING (one more wrapper) — familiarize
yourself with setup
— Usehost_data use_device to provide correct pointer
— Implementcallto thrust::reduceusing c_ptr
= Use make for compilation

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #17(25

http://thrust.github.io/

#))0LICH

FORSCHUNGSZENTRUM

Tasks

Task 4

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #1825

Task 4 #))0LICH

FORSCHUNGSZENTRUM
Stating the Problem

= We want to solve the Poisson equation

Ad(z,y) = —p(z,y)

with periodic boundary conditions in z and y

= Needed, e.g., for finding electrostatic potential ® for a given
charge distribution p

= Model problem

p(z,y) = cos(4drx)sin(2my)
(w.y) € [0,1)*

= Analytically known: ®(z,y) = & cos(4nz) sin(27y)
= Let’s solve the Poisson equation with a Fourier Transform!

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #19[25

Task 4 #))0LICH

. . FORSCHUNGSZENTRUM
Introduction to Fourier Transforms

= Discrete Fourier Transform and Re-Transform:

N-1 N-1 L
~ 7271‘“{:]' ~ 27(I1jk
fe=) fe ¥ e fi=) few

j=0 k=0

= Timeforall f,: O(N?)
= Fast Fourier Transform: Recursively splitting — O(N log(N))
= Find derivatives in Fourier space:

N-1

It’s just multiplying by ik!

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #20(25

Task 4 #))0LICH

FORSCHUNGSZENTRUM

Plan for FFT Poisson Solution

Start with charge density p
Fourier-transform p
p < Fp)
Derive p in Fourier space twice
b —p/ (K2 +1;)
Inverse Fourier-transform quS

¢ F ()

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #2125

Task 4 #))0LICH

. . FORSCHUNGSZENTRUM
Plan for FFT Poisson Solution

Start with charge density p
Fourier-transform p

Derive p in Fourier space twice
q3 « —p/ <k2 n /<:2> OpenACC
x Y
Inverse Fourier-transform quS
b]_-—1((23) CuFFT

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #2125

Task 4 #))0LICH

FORSCHUNGSZENTRUM
CUFFT: C

= CcUFFT: NVIDIA’s (Fast) Fourier Transform library
— 1D, 2D, 3D transforms; complex and real data types
— Asynchronous execution
— Modeled after FFTW library (API)
— Part of CUDA Toolkit
— Fortran: PGI offers bindings with use cufft
— https://developer.nvidia.com/cufft

cufftDoubleComplex *src, =*tgt; // Device data!
cufftHandle plan;
// Setup 2d complex-complex trafo w/ dimensions (Nx, Ny)
cufftCreatePlan(plan, Nx, Ny, CUFFT_Z2Z);

cufftExecz2z(plan, src, tgt, CUFFT_FORWARD); // FFT

: cufftExecz2z(plan, tgt, tgt, CUFFT_INVERSE); // iFFT

// Inplace trafo /A-—-—-"

cufftDestroy(plan); // Clean-up

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #22|25

https://developer.nvidia.com/cufft

Task 4 #))0LICH

FFT: Fort FORSCHUNGSZENTRUM
cu . Fortran

= CcUFFT: NVIDIA’s (Fast) Fourier Transform library
— 1D, 2D, 3D transforms; complex and real data types
— Asynchronous execution
— Modeled after FFTW library (API)
— Part of CUDA Toolkit
— Fortran: PGI offers bindings with use cufft
— https://developer.nvidia.com/cufft

double complex, allocatable :: src(:,:), tgt(:,:) ! Device
integer :: plan, ierr
! Setup 2d complex-complex trafo w/ dimensions (Nx, Ny)
ierr = cufftCreatePlan(plan, Nx, Ny, CUFFT_Z2Z)

5 ierr = cufftExecz2Z(plan, src, tgt, CUFFT_FORWARD) ! FFT

: ierr = cufftExecz2zZ(plan, tgt, tgt, CUFFT_INVERSE) ! iFFT

! Inplace trafo NP

ierr = cufftDestroy(plan) ! Clean-up

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #22|25

https://developer.nvidia.com/cufft

Task 4 #))0LICH

.. FORSCHUNGSZENTRUM
Synchronizing cuFFT: C

= CUDA Streams enable interleaving of computational tasks
= CcuFFT uses streams for asynchronous execution

= cuFFT runs in default CUDA stream:;
OpenACC not — trouble

=- Force cuFFT on OpenACC stream
#include <openacc.h>
// Obtain the OpenACC default stream id
cudaStream_t accStream =
(cudaStream_t) acc_get_cuda_stream(acc_async_sync) ;
// Execute all cufft calls on this stream
cufftSetStream(accStream);

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #2325

Task 4 #))0LICH

.. FORSCHUNGSZENTRUM
Synchronizing cuFFT: Fortran

= CUDA Streams enable interleaving of computational tasks
= CcuFFT uses streams for asynchronous execution

= cuFFT runs in default CUDA stream:;
OpenACC not — trouble

=- Force cuFFT on OpenACC stream
use openacc
integer :: stream
! Obtain the OpenACC default stream id
stream = acc_get_cuda_stream(acc_async_sync)
! Execute all cufft calls on this stream
ierr = cufftSetStream(plan, stream)

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #2325

Task 4 #))0LICH

OpenACC and cuFFT FORSCHUNGSZENTRUM

= Use case: Fourier transforms
= Task 4: Use cuFFT and OpenACC to solve Poisson’s Equation
= Location of code: Interoperability/tasks/{C,Fortran}/task4

= Parts of task:
Go through poisson.{c,Fortran} and work on TODOs

solveRSpace Force cuFFT on correct stream; implement data
handling with host_data use_device
solveKkSpace Implement data handling and parallelism

= Use make for compilation
= Note for Fortran: Code not well-tested! Might contain errors.

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #2425

Summary & Conclusion 0JULICH

FORSCHUNGSZENTRUM

= |f needed, OpenACC can play team with

— GPU-accelerated libraries
— Plain CUDA code

= Link externally compiled object (e.g. with nvcc) into
PGI-compiled OpenACC program
Alternative: use -ccbin=pgc++ asanvcc flag

= For Fortran, IS0_C_BINDING might be needed

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 #25(25

	Motivation
	The Keyword
	Tasks
	Task 1
	Task 2
	Task 3
	Task 4

