
M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Tools for Debugging &
Profiling
OpenACC Course 2016

Andreas Herten, Forschungszentrum Jülich, 24 October 2016

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Contents
What you will learn. Hopefully.

OpenACC can greatly
speedup porting to GPU
But many details hidden from
user

→ Compiler makes assumptions
Programmer makes mistakes

⇒ Insight into program needed

Introduction
PGI Tools

Runtime Measurements
pgprof

NVIDIA Tools
cuda-memcheck
cuda-gdb
nvprof
Visual Profiler

Tasks
Task 1
Task 2

Andreas Herten | Tools for Debugging & Profiling | 24 October 2016 # 2 20

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Contents
What you will learn. Hopefully.

OpenACC can greatly
speedup porting to GPU
But many details hidden from
user

→ Compiler makes assumptions
Programmer makes mistakes

⇒ Insight into program needed

Introduction
PGI Tools

Runtime Measurements
pgprof

NVIDIA Tools
cuda-memcheck
cuda-gdb
nvprof
Visual Profiler

Tasks
Task 1
Task 2

Andreas Herten | Tools for Debugging & Profiling | 24 October 2016 # 2 20

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Exposition

$./spmv
call to cuStreamSynchronize returned error 700: Illegal address during kernel

execution↪→

Where does error come from?
Is it an error at all?
… and how do I find out?

Andreas Herten | Tools for Debugging & Profiling | 24 October 2016 # 3 20

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

General notes

Building for debugging
-g Add debug information to executable;

adds overhead→ program performs
slower
Usually, in host code, -g has little impact.

-ta=tesla:lineinfo Add information to assembly to relate
instructions to source code (light debug
info)

Check compiler output: -Minfo=accel

Andreas Herten | Tools for Debugging & Profiling | 24 October 2016 # 4 20

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PGI Runtime Measurements
For quick sanity checks

Applications compiled with PGI compiler: Analyze via environment
variables
Maybe simplest/quickest check

PGI_ACC_TIME Lightweight profiler for time of data movement and
kernels

PGI_ACC_NOTIFY Print information for GPU-related events.
Set to number, to print…
=1 …kernel launches only
=2 …data transfers only
=3 …kernel launches and data transfers
=4 … region entry/exits only
=5 … region entry/exits and kernel launches
=8 …wait operations, synchronizations
=16 … (de)allocation of device memory

Andreas Herten | Tools for Debugging & Profiling | 24 October 2016 # 5 20

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PGI Runtime Measurements

Usage: PGI_ACC_NOTIFY=3 ./app

Andreas Herten | Tools for Debugging & Profiling | 24 October 2016 # 6 20

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PGPROF Graphical Performance Profiler
PGI’s graphical profiler

Graphical, interactive profiler
Comes with PGI’s compiler collection
Nice visualizations, quick insight
For OpenACC, OpenMP, CUDA
Close to NVIDIA Visual Profiler

→ https://www.pgroup.com/products/pgprof.htm

Andreas Herten | Tools for Debugging & Profiling | 24 October 2016 # 7 20

https://www.pgroup.com/products/pgprof.htm

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PGPROF Graphical Performance Profiler
PGI’s graphical profiler

Andreas Herten | Tools for Debugging & Profiling | 24 October 2016 # 7 20

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PGPROF Graphical Performance Profiler
NVIDIA Visual Profiler

Andreas Herten | Tools for Debugging & Profiling | 24 October 2016 # 7 20

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

cuda-memcheck
Command-line memory access analyzer

Memory error detector; similar to Valgrind’s memcheck
One of most helpful tools for error-finding
— Out-of-bounds accesses
— Kernels/API execution failures
— Memory leaks

Has sub-tools, via cuda-memcheck --tool NAME:
— memcheck: Memory access checking (default)
— racecheck: Sharedmemory hazard checking
— Also: synccheck, initcheck

Remember to compile programwith debug information: -g

→ http://docs.nvidia.com/cuda/cuda-memcheck/

Andreas Herten | Tools for Debugging & Profiling | 24 October 2016 # 8 20

http://valgrind.org/docs/manual/mc-manual.html
http://docs.nvidia.com/cuda/cuda-memcheck/

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

cuda-memcheck
Example

Start via cuda-memcheck app

Andreas Herten | Tools for Debugging & Profiling | 24 October 2016 # 9 20

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

cuda-gdb
Symbolic debugger

Powerful symbolic debugger for CUDA code
Built on top of gdb
Full usage: own course needed

cuda-gdb 101

run Starts application, give arguments with set args 1 2 …

break L Create breakpoint
L: function name, line number LN, or FILE:LN

continue Continue running

print i Print content of i

info locals Print all currently set variables

info cuda threads Print current thread configuration

cuda thread N Switch context to thread number N → cheat sheet

→ http://docs.nvidia.com/cuda/cuda-gdb/

Andreas Herten | Tools for Debugging & Profiling | 24 October 2016 # 10 20

https://www.gnu.org/software/gdb/
http://darkdust.net/files/GDB%20Cheat%20Sheet.pdf
http://docs.nvidia.com/cuda/cuda-gdb/

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

cuda-gdb
Symbolic debugger

Powerful symbolic debugger for CUDA code
Built on top of gdb
Full usage: own course needed
cuda-gdb 101

run Starts application, give arguments with set args 1 2 …

break L Create breakpoint
L: function name, line number LN, or FILE:LN

continue Continue running

print i Print content of i

info locals Print all currently set variables

info cuda threads Print current thread configuration

cuda thread N Switch context to thread number N → cheat sheet

→ http://docs.nvidia.com/cuda/cuda-gdb/

Andreas Herten | Tools for Debugging & Profiling | 24 October 2016 # 10 20

https://www.gnu.org/software/gdb/
http://darkdust.net/files/GDB%20Cheat%20Sheet.pdf
http://docs.nvidia.com/cuda/cuda-gdb/

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

cuda-gdb
Symbolic debugger

Powerful symbolic debugger for CUDA code
Built on top of gdb
Full usage: own course needed
cuda-gdb 101

run Starts application, give arguments with set args 1 2 …

break L Create breakpoint
L: function name, line number LN, or FILE:LN

continue Continue running

print i Print content of i

info locals Print all currently set variables

info cuda threads Print current thread configuration

cuda thread N Switch context to thread number N → cheat sheet

→ http://docs.nvidia.com/cuda/cuda-gdb/

Andreas Herten | Tools for Debugging & Profiling | 24 October 2016 # 10 20

https://www.gnu.org/software/gdb/
http://darkdust.net/files/GDB%20Cheat%20Sheet.pdf
http://docs.nvidia.com/cuda/cuda-gdb/

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

cuda-gdb
With OpenACC

cuda-gdb can be used for OpenACC as well!
Problem: Name of OpenACC-generated kernel?

→ Recipe: strings ./app | grep .*_gpu | sort | uniq

strings ./app Print occurrences of≥4 printable characters
grep .*_gpu Search for _gpu line endings
sort | uniq Eliminate duplicates from list

Examples of kernel names
Pattern: function_line_gpu

C main_42_gpu
Fortran spmv_26_gpu

Andreas Herten | Tools for Debugging & Profiling | 24 October 2016 # 11 20

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

cuda-gdb
Example

Start via cuda-gdb app→ run
Set breakpoint with break func or break L or break file.c:L

Andreas Herten | Tools for Debugging & Profiling | 24 October 2016 # 12 20

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

nvprof / pgprof
Command-line GPU profiler

Profiles CUDA kernels and API calls; also CPU code!
Suitable for OpenACC as well
pgprof: Very similar to nvprof, but different default options
Generate performance reports, timelines; measure events and
metrics

⇒ Powerful complete tool for GPU application analysis

→ http://docs.nvidia.com/cuda/profiler-users-guide/

Andreas Herten | Tools for Debugging & Profiling | 24 October 2016 # 13 20

http://docs.nvidia.com/cuda/profiler-users-guide/

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

nvprof
Example

Start via nvprof ./app

Andreas Herten | Tools for Debugging & Profiling | 24 October 2016 # 14 20

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Visual Profiler
Graphical analysis

Timeline view of all things GPU (API calls, kernels, memory)
→ study stages and interplay of application
View launch and run configurations
Guided and unguided analysis, with (among others):
— Performance limiters
— Kernel and execution properties
— Memory access patterns

→ https://developer.nvidia.com/nvidia-visual-profiler

Andreas Herten | Tools for Debugging & Profiling | 24 October 2016 # 15 20

https://developer.nvidia.com/nvidia-visual-profiler

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Visual Profiler
Example

Start via nvvp→ File ↪→ New Session

Andreas Herten | Tools for Debugging & Profiling | 24 October 2016 # 16 20

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Visual Profiler
Example

Start via nvvp→ File ↪→ New Session

Expert Analysis Timeline Selection Details

Andreas Herten | Tools for Debugging & Profiling | 24 October 2016 # 16 20

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 1

Location of tasks: ACCOUNT/Course/Debugging/
Tasks available in C and Fortran

Task 1: Vector addition and reduction: a⃗ = b⃗+ c⃗ → γ =
∑
i
ci

Steps

Build!
make

Run!
srun ./vecAddRed.bin

Fix!
cuda-memcheck; cuda-gdb;

Result should be 1.

JURECA Getting Started

module load PGI CUDA
salloc --reservation=openacc --partition=gpus --nodes=1 --time=1:30:00

--gres=mem128,gpu:4↪→
srun cuda-memcheck ./vecAddRed.bin

Andreas Herten | Tools for Debugging & Profiling | 24 October 2016 # 17 20

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 1

Location of tasks: ACCOUNT/Course/Debugging/
Tasks available in C and Fortran
Task 1: Vector addition and reduction: a⃗ = b⃗+ c⃗ → γ =

∑
i
ci

Steps

Build!
make

Run!
srun ./vecAddRed.bin

Fix!
cuda-memcheck; cuda-gdb;

Result should be 1.

JURECA Getting Started

module load PGI CUDA
salloc --reservation=openacc --partition=gpus --nodes=1 --time=1:30:00

--gres=mem128,gpu:4↪→
srun cuda-memcheck ./vecAddRed.bin

Andreas Herten | Tools for Debugging & Profiling | 24 October 2016 # 17 20

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 1

Location of tasks: ACCOUNT/Course/Debugging/
Tasks available in C and Fortran
Task 1: Vector addition and reduction: a⃗ = b⃗+ c⃗ → γ =

∑
i
ci

Steps

Build!
make

Run!
srun ./vecAddRed.bin

Fix!
cuda-memcheck; cuda-gdb;

Result should be 1.

JURECA Getting Started

module load PGI CUDA
salloc --reservation=openacc --partition=gpus --nodes=1 --time=1:30:00

--gres=mem128,gpu:4↪→
srun cuda-memcheck ./vecAddRed.bin

Andreas Herten | Tools for Debugging & Profiling | 24 October 2016 # 17 20

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 2

Task 2: Sparse Matrix-Vector Product (SpMV): x⃗ = Ay⃗

CSR data layout

4 0 0 0 1 -2
3 0 0 1 -2 1
2 0 1 -2 1 0
1 1 -2 1 0 0
0 -2 1 0 0 0

0 1 2 3 4

1 -2
1 -2 1

1 -2 1
1 -2 1
-2 1

4
3
2
1
0

0 1 2 3 4

row_ptr

col_ptr

-2 1 1 -2 1 1 -2 1 1 -2 1 1 -2val

Andreas Herten | Tools for Debugging & Profiling | 24 October 2016 # 18 20

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 2

Task 2: Sparse Matrix-Vector Product (SpMV): x⃗ = Ay⃗
CSR data layout

4 0 0 0 1 -2
3 0 0 1 -2 1
2 0 1 -2 1 0
1 1 -2 1 0 0
0 -2 1 0 0 0

0 1 2 3 4

1 -2
1 -2 1

1 -2 1
1 -2 1
-2 1

4
3
2
1
0

0 1 2 3 4

row_ptr

col_ptr

-2 1 1 -2 1 1 -2 1 1 -2 1 1 -2val

Andreas Herten | Tools for Debugging & Profiling | 24 October 2016 # 18 20

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 2

Task 2: Sparse Matrix-Vector Product (SpMV): x⃗ = Ay⃗
CSR data layout

4 0 0 0 1 -2
3 0 0 1 -2 1
2 0 1 -2 1 0
1 1 -2 1 0 0
0 -2 1 0 0 0

0 1 2 3 4

1 -2
1 -2 1

1 -2 1
1 -2 1
-2 1

4
3
2
1
0

0 1 2 3 4

row_ptr

col_ptr

-2 1 1 -2 1 1 -2 1 1 -2 1 1 -2val

Andreas Herten | Tools for Debugging & Profiling | 24 October 2016 # 18 20

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 2

Task 2: Sparse Matrix-Vector Product (SpMV): x⃗ = Ay⃗
CSR data layout

4 0 0 0 1 -2
3 0 0 1 -2 1
2 0 1 -2 1 0
1 1 -2 1 0 0
0 -2 1 0 0 0

0 1 2 3 4

1 -2
1 -2 1

1 -2 1
1 -2 1
-2 1

4
3
2
1
0

0 1 2 3 4

row_ptr

col_ptr

-2 1 1 -2 1 1 -2 1 1 -2 1 1 -2val

Andreas Herten | Tools for Debugging & Profiling | 24 October 2016 # 18 20

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 2

Task 2: Sparse Matrix-Vector Product (SpMV): x⃗ = Ay⃗
CSR data layout

4 0 0 0 1 -2
3 0 0 1 -2 1
2 0 1 -2 1 0
1 1 -2 1 0 0
0 -2 1 0 0 0

0 1 2 3 4

1 -2
1 -2 1

1 -2 1
1 -2 1
-2 1

4
3
2
1
0

0 1 2 3 4

row_ptr

col_ptr

-2 1 1 -2 1 1 -2 1 1 -2 1 1 -2val

Andreas Herten | Tools for Debugging & Profiling | 24 October 2016 # 18 20

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 2

Task 2: Sparse Matrix-Vector Product (SpMV): x⃗ = Ay⃗
CSR data layout

4 0 0 0 1 -2
3 0 0 1 -2 1
2 0 1 -2 1 0
1 1 -2 1 0 0
0 -2 1 0 0 0

0 1 2 3 4

1 -2
1 -2 1

1 -2 1
1 -2 1
-2 1

4
3
2
1
0

0 1 2 3 4

row_ptr

col_ptr

-2 1 1 -2 1 1 -2 1 1 -2 1 1 -2val

Andreas Herten | Tools for Debugging & Profiling | 24 October 2016 # 18 20

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 2

Task 2: Sparse Matrix-Vector Product (SpMV): x⃗ = Ay⃗
CSR data layout

4 0 0 0 1 -2
3 0 0 1 -2 1
2 0 1 -2 1 0
1 1 -2 1 0 0
0 -2 1 0 0 0

0 1 2 3 4

1 -2
1 -2 1

1 -2 1
1 -2 1
-2 1

4
3
2
1
0

0 1 2 3 4

row_ptr

0 1 0 1 2 1 2 3 2 3 4 3 4col_ptr

-2 1 1 -2 1 1 -2 1 1 -2 1 1 -2val

Andreas Herten | Tools for Debugging & Profiling | 24 October 2016 # 18 20

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 2

Task 2: Sparse Matrix-Vector Product (SpMV): x⃗ = Ay⃗
CSR data layout

4 0 0 0 1 -2
3 0 0 1 -2 1
2 0 1 -2 1 0
1 1 -2 1 0 0
0 -2 1 0 0 0

0 1 2 3 4

1 -2
1 -2 1

1 -2 1
1 -2 1
-2 1

4
3
2
1
0

0 1 2 3 4

0 2 5 8 11 13row_ptr

0 1 0 1 2 1 2 3 2 3 4 3 4col_ptr

-2 1 1 -2 1 1 -2 1 1 -2 1 1 -2val

Andreas Herten | Tools for Debugging & Profiling | 24 October 2016 # 18 20

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 2

Task 2: Sparse Matrix-Vector Product (SpMV): x⃗ = Ay⃗
CSR data layout
Build! Run! Fix!

JURECA Getting Started

module load PGI CUDA
salloc --reservation=openacc --partition=gpus --nodes=1 --time=1:30:00

--gres=mem128,gpu:4↪→
srun cuda-memcheck ./spmv.bin

Andreas Herten | Tools for Debugging & Profiling | 24 October 2016 # 19 20

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 2

Task 2: Sparse Matrix-Vector Product (SpMV): x⃗ = Ay⃗
CSR data layout
Build! Run! Fix!

JURECA Getting Started

module load PGI CUDA
salloc --reservation=openacc --partition=gpus --nodes=1 --time=1:30:00

--gres=mem128,gpu:4↪→
srun cuda-memcheck ./spmv.bin

Andreas Herten | Tools for Debugging & Profiling | 24 October 2016 # 19 20

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Summary & Conclusion

All the CUDA debugging and performancemeasurement tools
work
— pgprof
— cuda-memcheck
— cuda-gdb
— nvprof
— Visual Profiler

Sometimes, a little digging is needed to find
automatically-generated function names

Andreas Herten | Tools for Debugging & Profiling | 24 October 2016 # 20 20

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Summary & Conclusion

All the CUDA debugging and performancemeasurement tools
work
— pgprof
— cuda-memcheck
— cuda-gdb
— nvprof
— Visual Profiler

Sometimes, a little digging is needed to find
automatically-generated function names

Happy Debu
gging!

a.herten@fz-juelich.de

Andreas Herten | Tools for Debugging & Profiling | 24 October 2016 # 20 20

mailto:a.herten@fz-juelich.de

	Introduction
	PGI Tools
	Runtime Measurements
	pgprof

	NVIDIA Tools
	cuda-memcheck
	cuda-gdb
	nvprof
	Visual Profiler

	Tasks
	Task 1
	Task 2

