
M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

OpenACC CUDA
Interoperability
OpenACC Course 2016

Andreas Herten, Forschungszentrum Jülich, 24 October 2016



M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Contents
OpenACC is a team player!

OpenACC can interplay with
CUDA

OpenACC can interplay with
GPU-enabled libraries

Motivation
The Keyword
Tasks

Task 1
Task 2
Task 3
Task 4

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 2 25



M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Contents
OpenACC is a team player!

OpenACC can interplay with
CUDA

OpenACC can interplay with
GPU-enabled libraries

Motivation
The Keyword
Tasks

Task 1
Task 2
Task 3
Task 4

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 2 25



M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Motivation

Usually, three reasons for mixing OpenACCwith others
1 Libraries!

— A lot of hard problems have already been solved by others
→ Make use of this!

2 Existing environment
— You build up on other’s work
— Part of code is already ported (e.g. with CUDA), the rest should

follow
— OpenACC is a good first step in porting, CUDA a possible next

3 OpenACC coverage
— Sometimes, OpenACC does not support specific part needed (very

well)
— Sometimes, more fine-grainedmanipulation needed

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 3 25



M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Motivation

Usually, three reasons for mixing OpenACCwith others
1 Libraries!

— A lot of hard problems have already been solved by others
→ Make use of this!

2 Existing environment
— You build up on other’s work
— Part of code is already ported (e.g. with CUDA), the rest should

follow
— OpenACC is a good first step in porting, CUDA a possible next

3 OpenACC coverage
— Sometimes, OpenACC does not support specific part needed (very

well)
— Sometimes, more fine-grainedmanipulation needed

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 3 25



M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Motivation

Usually, three reasons for mixing OpenACCwith others
1 Libraries!

— A lot of hard problems have already been solved by others
→ Make use of this!

2 Existing environment
— You build up on other’s work
— Part of code is already ported (e.g. with CUDA), the rest should

follow
— OpenACC is a good first step in porting, CUDA a possible next

3 OpenACC coverage
— Sometimes, OpenACC does not support specific part needed (very

well)
— Sometimes, more fine-grainedmanipulation needed

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 3 25



M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

The Keyword
OpenACC’s Rosetta Stone

host_data use_device

Background
— GPU and CPU are different devices, have different memory
→ Distinct address spaces
OpenACC hides handling of addresses from user
— For every chunk of accelerated data, two addresses exist
— One for CPU data, one for GPU data
— OpenACC uses appropriate address in accelerated kernel

But: Automatic handling not working when out of OpenACC
(OpenACCwill default to host address)

→ host_data use_device uses the address of the GPU device data
for scope

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 4 25



M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

The Keyword
OpenACC’s Rosetta Stone

host_data use_device

Background
— GPU and CPU are different devices, have different memory
→ Distinct address spaces
OpenACC hides handling of addresses from user
— For every chunk of accelerated data, two addresses exist
— One for CPU data, one for GPU data
— OpenACC uses appropriate address in accelerated kernel

But: Automatic handling not working when out of OpenACC
(OpenACCwill default to host address)

→ host_data use_device uses the address of the GPU device data
for scope

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 4 25



M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

The host_data Construct
C

Usage:
double* foo = new double[N]; // foo on Host
#pragma acc data copyin(foo[0:N]) // foo on Device
{
...
#pragma acc host_data use_device(foo)
some_lfunc(foo); // Device: OK!
...

}

Directive can be used for structured block as well

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 5 25



M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

The host_data Construct
Fortran

Usage example
real(8) :: foo(N) ! foo on Host
!$acc data copyin(foo) ! foo on Device
...
!$acc host_data use_device(foo)
call some_func(foo); ! Device: OK!
!$acc end host_data
...

!$acc end data
Directive can be used for structured block as well

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 5 25



M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

The Inverse: deviceptr
When CUDA is involved

For the inverse case:
— Data has been copied by CUDA or a CUDA-using library
— Pointer to data residing on devices is returned
→ Use this data in OpenACC context
deviceptr clause declares data to be on device

Usage ():

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 6 25



M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

The Inverse: deviceptr
When CUDA is involved

For the inverse case:
— Data has been copied by CUDA or a CUDA-using library
— Pointer to data residing on devices is returned
→ Use this data in OpenACC context
deviceptr clause declares data to be on device
Usage (C):
float * n;
int n = 4223;
cudaMalloc((void**)&x,(size_t)n*sizeof(float));
// ...
#pragma acc kernels deviceptr(x)
for (int i = 0; i < n; i++) {

x[i] = i;
}

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 6 25



M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

The Inverse: deviceptr
When CUDA is involved

For the inverse case:
— Data has been copied by CUDA or a CUDA-using library
— Pointer to data residing on devices is returned
→ Use this data in OpenACC context
deviceptr clause declares data to be on device
Usage (Fortran):
integer, parameter :: n = 4223
real, device, dimension(N) :: x ! automatically on device
integer :: i

// ...
!$acc kernels deviceptr(x)
do i=1, n

x(i) = i
end do
!$acc end kernels

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 6 25



M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Tasks

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 7 25



M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Tasks
Task 1

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 8 25



M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 1
Introduction to BLAS

Use case: Anything linear algebra
BLAS: Basic Linear Algebra Subprograms
— Vector-vector, vector-matrix, matrix-matrix operations
— Specification of routines
— Examples: SAXPY, DGEMV, ZGEMM
→ http://www.netlib.org/blas/

cuBLAS: NVIDIA’s linear algebra routines with BLAS interface,
readily accelerated
→ http://docs.nvidia.com/cuda/cublas/
Task 1: Use cuBLAS for vector addition, everything else with
OpenACC

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 9 25

http://www.netlib.org/blas/
http://docs.nvidia.com/cuda/cublas/


M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 1
cuBLAS OpenACC Interaction

cuBLAS routine used:
cublasDaxpy(cublasHandle_t handle, int n,

const double *alpha,
const double *x, int incx,
double *y, int incy)

handle capsules GPU auxiliary data, needs to be created and
destroyed with cublasCreate and cublasDestroy

x and y point to addresses on device!
cuBLAS library needs to be linked with -lcublas

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 10 25



M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 1
cuBLAS on Fortran

PGI offers bindings to cuBLAS out of the box
integer(4) function cublasdaxpy_v2(h, n, a, x, incx, y, incy)

type(cublasHandle) :: h
integer :: n
real(8) :: a
real(8), device, dimension(*) :: x, y
integer :: incx, incy

Usage: use cublas in code; add -Mcuda -Lcublas during compilation
Notes
— Legacy (v1) cuBLAS bindings (no handle) also available, i.e. cublasdaxpy()
— PGI’s Fortran allows to omit host_data use_device, but not recommended
— Module openacc_cublas exists, specifically designed for usage with

OpenACC (no need for host_data use_device)
⇒ Both not part of training

→ https://www.pgroup.com/doc/pgicudaint.pdf

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 11 25

https://www.pgroup.com/doc/pgicudaint.pdf


M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 1
Vector Addition with cuBLAS

Location of code: Interoperability/tasks/{C,Fortran}/task1
Parts of task:
Go through vecAddRed.{c,F03}, work on TODOs
— Use host_data use_device to provide correct pointer
— Check cuBLAS documentation for details on cublasDaxpy()

Compile with make

JURECA Getting Started

module load PGI CUDA
salloc --reservation=openacc --partition=gpus --nodes=1 --time=1:30:00

--gres=mem128,gpu:4↪→
make
srun ./vecAddRed.bin

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 12 25

http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-axpy


M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 1
Vector Addition with cuBLAS

Location of code: Interoperability/tasks/{C,Fortran}/task1
Parts of task:
Go through vecAddRed.{c,F03}, work on TODOs
— Use host_data use_device to provide correct pointer
— Check cuBLAS documentation for details on cublasDaxpy()

Compile with make

JURECA Getting Started

module load PGI CUDA
salloc --reservation=openacc --partition=gpus --nodes=1 --time=1:30:00

--gres=mem128,gpu:4↪→
make
srun ./vecAddRed.bin

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 12 25

http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-axpy


M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Tasks
Task 2

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 13 25



M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 2
CUDA Need-to-Know

Use case:
— Working on legacy code
— Need the raw power (/flexibility) of CUDA

CUDA need-to-knows:
— Thread→ Block→ Grid

Total number of threads should map to your problem; threads are
alway given per block

— A kernel is called from every thread on GPU device
Number of kernel threads: triple chevron syntax
kernel<<<nBlocks, nThreads>>>(arg1, arg2, ...)

— Kernel: Function with __global__ prefix
Aware of its index by global variables, e.g. threadIdx.x

→ http://docs.nvidia.com/cuda/

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 14 25

http://docs.nvidia.com/cuda/


M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 2
Vector Addition with CUDA Kernel: C

Task 2: Use a CUDA kernel for vector addition, everything else with
OpenACC

Location of code: Interoperability/tasks/C/task2
Marrying CUDA C and OpenACC:

— All direct CUDA interaction wrapped in wrapper file cudaWrapper.cu,
compiled with nvcc to object file (-c)

— vecAddRed.c calls external function from cudaWrapper.cu ( extern)
↪→ vecAddRed.c:main()→ cudaWrapper.cu:cudaVecAddWrapper()→

cudaWrapper.cu:cudaVecAdd()→ CUDA

Parts of task:
Go through vecAddRed.c and cublasWrapper.cu, work on TODOs

— Use host_data use_device to provide correct pointer
— Implement computation in kernel, implement call of kernel

Again, use make to compile
Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 15 25



M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 2
Vector Addition with CUDA Kernel: Fortran

Task 2: Use a CUDA kernel for vector addition, everything else with
OpenACC

Location of code: Interoperability/tasks/Fortran/task2
Marrying CUDA Fortran and OpenACC:

— No need to use wrappers!
— OpenACC and CUDA Fortran directly supported in same source
— Having a dedicatedmodule file could make sense anyway

Parts of task:
Go through vecAddRed.F03 and work on TODOs

— Use host_data use_device to provide correct pointer
— Implement computation in kernel, implement call of kernel

Again, use make to compile

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 15 25



M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Tasks
Task 3

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 16 25



M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 3
Vector Addition with Thrust: C

Thrust
— Template library for CUDA C/C++ (similar to STL)
— Offers many pre-made algorithms for popular computing tasks
— Usually works with C++ iterators, but understands C arrays as well
→ http://thrust.github.io/

Task 3: Use Thrust for reduction, everything else of vector
addition with OpenACC
Location of code: Interoperability/tasks/C/task3
Parts of task:
Go through vecAddRed.c and thrustWrapper.cu, work on TODOs
— Use host_data use_device to provide correct pointer
— Implement call to thrust::reduce using c_ptr

Use make for compilation

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 17 25

http://thrust.github.io/


M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 3
Vector Addition with Thrust: Fortran

Thrust
— Template library for CUDA C/C++ (similar to STL)
— Offers many pre-made algorithms for popular computing tasks
— Usually works with C++ iterators, but understands C arrays as well
→ http://thrust.github.io/
Task 3: Use Thrust for reduction, everything else of vector
addition with OpenACC
Location of code Interoperability/tasks/Fortran/task3
Parts of task:
Go through vecAddRed.F09, thrustWrapper.cu and
fortranthrust.F03, work on TODOs
— Thrust used via ISO_C_BINDING (onemore wrapper)→ familiarize

yourself with setup
— Use host_data use_device to provide correct pointer
— Implement call to thrust::reduce using c_ptr
Use make for compilation

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 17 25

http://thrust.github.io/


M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Tasks
Task 4

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 18 25



M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 4
Stating the Problem

Wewant to solve the Poisson equation

∆Φ(x, y) = −ρ(x, y)

with periodic boundary conditions in x and y

Needed, e.g., for finding electrostatic potentialΦ for a given
charge distribution ρ
Model problem

ρ(x, y) = cos(4πx) sin(2πy)
(x, y) ∈ [0, 1)2

Analytically known: Φ(x, y) = Φ0 cos(4πx) sin(2πy)
Let’s solve the Poisson equation with a Fourier Transform!

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 19 25



M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 4
Introduction to Fourier Transforms

Discrete Fourier Transform and Re-Transform:

f̂k =

N−1∑
j=0

fje
− 2πik

N
j ⇔ fj =

N−1∑
k=0

f̂ke
2πij
N

k

Time for all f̂k: O(N
2)

Fast Fourier Transform: Recursively splitting→O(N log(N))

Find derivatives in Fourier space:

f ′
j =

N−1∑
k=0

ikf̂ke
2πij
N

k

It’s just multiplying by ik!

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 20 25



M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 4
Plan for FFT Poisson Solution

Start with charge density ρ
1 Fourier-transform ρ

ρ̂← F (ρ)

2 Derive ρ in Fourier space twice
ϕ̂← −ρ̂/

(
k2x + k2y

)
3 Inverse Fourier-transform ϕ̂

ϕ← F−1(ϕ̂)

cuFFT

OpenACC

cuFFT

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 21 25



M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 4
Plan for FFT Poisson Solution

Start with charge density ρ
1 Fourier-transform ρ

ρ̂← F (ρ)

2 Derive ρ in Fourier space twice
ϕ̂← −ρ̂/

(
k2x + k2y

)
3 Inverse Fourier-transform ϕ̂

ϕ← F−1(ϕ̂)

cuFFT

OpenACC

cuFFT

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 21 25



M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 4
cuFFT: C

cuFFT: NVIDIA’s (Fast) Fourier Transform library
— 1D, 2D, 3D transforms; complex and real data types
— Asynchronous execution
— Modeled after FFTW library (API)
— Part of CUDA Toolkit
— Fortran: PGI offers bindings with use cufft
→ https://developer.nvidia.com/cufft

cufftDoubleComplex *src, *tgt; // Device data!
cufftHandle plan;
// Setup 2d complex-complex trafo w/ dimensions (Nx, Ny)
cufftCreatePlan(plan, Nx, Ny, CUFFT_Z2Z);
cufftExecZ2Z(plan, src, tgt, CUFFT_FORWARD); // FFT
cufftExecZ2Z(plan, tgt, tgt, CUFFT_INVERSE); // iFFT
// Inplace trafo ^----^
cufftDestroy(plan); // Clean-up

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 22 25

https://developer.nvidia.com/cufft


M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 4
cuFFT: Fortran

cuFFT: NVIDIA’s (Fast) Fourier Transform library
— 1D, 2D, 3D transforms; complex and real data types
— Asynchronous execution
— Modeled after FFTW library (API)
— Part of CUDA Toolkit
— Fortran: PGI offers bindings with use cufft
→ https://developer.nvidia.com/cufft

double complex, allocatable :: src(:,:), tgt(:,:) ! Device
integer :: plan, ierr
! Setup 2d complex-complex trafo w/ dimensions (Nx, Ny)
ierr = cufftCreatePlan(plan, Nx, Ny, CUFFT_Z2Z)
ierr = cufftExecZ2Z(plan, src, tgt, CUFFT_FORWARD) ! FFT
ierr = cufftExecZ2Z(plan, tgt, tgt, CUFFT_INVERSE) ! iFFT
! Inplace trafo ^----^
ierr = cufftDestroy(plan) ! Clean-up

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 22 25

https://developer.nvidia.com/cufft


M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 4
Synchronizing cuFFT: C

CUDA Streams enable interleaving of computational tasks
cuFFT uses streams for asynchronous execution
cuFFT runs in default CUDA stream;
OpenACC not→ trouble

⇒ Force cuFFT on OpenACC stream
#include <openacc.h>
// Obtain the OpenACC default stream id
cudaStream_t accStream =

(cudaStream_t) acc_get_cuda_stream(acc_async_sync) ;
// Execute all cufft calls on this stream
cufftSetStream(accStream);

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 23 25



M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 4
Synchronizing cuFFT: Fortran

CUDA Streams enable interleaving of computational tasks
cuFFT uses streams for asynchronous execution
cuFFT runs in default CUDA stream;
OpenACC not→ trouble

⇒ Force cuFFT on OpenACC stream
use openacc
integer :: stream
! Obtain the OpenACC default stream id
stream = acc_get_cuda_stream(acc_async_sync)
! Execute all cufft calls on this stream
ierr = cufftSetStream(plan, stream)

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 23 25



M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 4
OpenACC and cuFFT

Use case: Fourier transforms
Task 4: Use cuFFT and OpenACC to solve Poisson’s Equation
Location of code: Interoperability/tasks/{C,Fortran}/task4
Parts of task:
Go through poisson.{c,Fortran} and work on TODOs
solveRSpace Force cuFFT on correct stream; implement data

handling with host_data use_device
solveKSpace Implement data handling and parallelism
Use make for compilation
Note for Fortran: Code not well-tested! Might contain errors.

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 24 25



M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Summary & Conclusion

If needed, OpenACC can play teamwith
— GPU-accelerated libraries
— Plain CUDA code

Link externally compiled object (e.g. with nvcc) into
PGI-compiled OpenACC program
Alternative: use -ccbin=pgc++ as a nvcc flag
For Fortran, ISO_C_BINDINGmight be needed

Andreas Herten | OpenACC CUDA Interoperability | 24 October 2016 # 25 25


	Motivation
	The Keyword
	Tasks
	Task 1
	Task 2
	Task 3
	Task 4


