000820744 001__ 820744 000820744 005__ 20210129224607.0 000820744 0247_ $$2arXiv$$aarXiv:1611.01383 000820744 0247_ $$2Handle$$a2128/12794 000820744 0247_ $$2altmetric$$aaltmetric:13396852 000820744 037__ $$aFZJ-2016-06011 000820744 082__ $$a530 000820744 1001_ $$0P:(DE-Juel1)145643$$aHasan, Nesreen$$b0$$ufzj 000820744 1112_ $$a34th International Symposium on Lattice Field Theory$$cSouthampton$$d2016-07-24 - 2016-07-30$$gLattice 2016$$wUK 000820744 245__ $$aComputing the nucleon Dirac radius directly at $Q^2=0$ 000820744 260__ $$aTrieste$$bSISSA$$c2016 000820744 300__ $$a147 000820744 3367_ $$2ORCID$$aCONFERENCE_PAPER 000820744 3367_ $$033$$2EndNote$$aConference Paper 000820744 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$mjournal 000820744 3367_ $$2BibTeX$$aINPROCEEDINGS 000820744 3367_ $$2DRIVER$$aconferenceObject 000820744 3367_ $$2DataCite$$aOutput Types/Conference Paper 000820744 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1479136823_4503 000820744 520__ $$aWe describe a lattice approach for directly computing momentum derivatives of nucleon matrix elements using the Rome method, which we apply to obtain the isovector magnetic moment and Dirac radius. We present preliminary results calculated at the physical pion mass using a 2HEX-smeared Wilson-clover action. For removing the effects of excited-state contamination, the calculations were done at three source-sink separations and the summation method was used. 000820744 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0 000820744 588__ $$aDataset connected to arXivarXiv 000820744 7001_ $$0P:(DE-HGF)0$$aEngelhardt, Michael$$b1 000820744 7001_ $$0P:(DE-HGF)0$$aGreen, Jeremy$$b2 000820744 7001_ $$0P:(DE-Juel1)132171$$aKrieg, Stefan$$b3$$ufzj 000820744 7001_ $$0P:(DE-HGF)0$$aMeinel, Stefan$$b4 000820744 7001_ $$0P:(DE-HGF)0$$aNegele, John$$b5 000820744 7001_ $$0P:(DE-HGF)0$$aPochinsky, Andrew$$b6 000820744 7001_ $$0P:(DE-HGF)0$$aSyritsyn, Sergey$$b7 000820744 773__ $$0PERI:(DE-600)2642026-0$$p147$$tProceedings of Science$$vLATTICE2016$$x1824-8039$$y2016 000820744 8564_ $$uhttps://juser.fz-juelich.de/record/820744/files/LATTICE2016_147.pdf$$yOpenAccess 000820744 8564_ $$uhttps://juser.fz-juelich.de/record/820744/files/LATTICE2016_147.gif?subformat=icon$$xicon$$yOpenAccess 000820744 8564_ $$uhttps://juser.fz-juelich.de/record/820744/files/LATTICE2016_147.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000820744 8564_ $$uhttps://juser.fz-juelich.de/record/820744/files/LATTICE2016_147.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000820744 8564_ $$uhttps://juser.fz-juelich.de/record/820744/files/LATTICE2016_147.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000820744 8564_ $$uhttps://juser.fz-juelich.de/record/820744/files/LATTICE2016_147.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000820744 909CO $$ooai:juser.fz-juelich.de:820744$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire 000820744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145643$$aForschungszentrum Jülich$$b0$$kFZJ 000820744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132171$$aForschungszentrum Jülich$$b3$$kFZJ 000820744 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000820744 9141_ $$y2016 000820744 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000820744 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 000820744 920__ $$lyes 000820744 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000820744 980__ $$acontrib 000820744 980__ $$aVDB 000820744 980__ $$aUNRESTRICTED 000820744 980__ $$ajournal 000820744 980__ $$aI:(DE-Juel1)JSC-20090406 000820744 9801_ $$aFullTexts