001     820744
005     20210129224607.0
024 7 _ |a arXiv:1611.01383
|2 arXiv
024 7 _ |a 2128/12794
|2 Handle
024 7 _ |a altmetric:13396852
|2 altmetric
037 _ _ |a FZJ-2016-06011
082 _ _ |a 530
100 1 _ |a Hasan, Nesreen
|0 P:(DE-Juel1)145643
|b 0
|u fzj
111 2 _ |a 34th International Symposium on Lattice Field Theory
|g Lattice 2016
|c Southampton
|d 2016-07-24 - 2016-07-30
|w UK
245 _ _ |a Computing the nucleon Dirac radius directly at $Q^2=0$
260 _ _ |a Trieste
|c 2016
|b SISSA
300 _ _ |a 147
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|m journal
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1479136823_4503
|2 PUB:(DE-HGF)
520 _ _ |a We describe a lattice approach for directly computing momentum derivatives of nucleon matrix elements using the Rome method, which we apply to obtain the isovector magnetic moment and Dirac radius. We present preliminary results calculated at the physical pion mass using a 2HEX-smeared Wilson-clover action. For removing the effects of excited-state contamination, the calculations were done at three source-sink separations and the summation method was used.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
588 _ _ |a Dataset connected to arXivarXiv
700 1 _ |a Engelhardt, Michael
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Green, Jeremy
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Krieg, Stefan
|0 P:(DE-Juel1)132171
|b 3
|u fzj
700 1 _ |a Meinel, Stefan
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Negele, John
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Pochinsky, Andrew
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Syritsyn, Sergey
|0 P:(DE-HGF)0
|b 7
773 _ _ |0 PERI:(DE-600)2642026-0
|p 147
|t Proceedings of Science
|v LATTICE2016
|y 2016
|x 1824-8039
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/820744/files/LATTICE2016_147.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/820744/files/LATTICE2016_147.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/820744/files/LATTICE2016_147.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/820744/files/LATTICE2016_147.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/820744/files/LATTICE2016_147.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/820744/files/LATTICE2016_147.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:820744
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145643
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)132171
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2016
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21