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1. Introduction

The “proton radius puzzle” refers to the 7σ discrepancy in the experimental determinations of

the charge radius of the proton between the value extracted from spectroscopy of muonic hydrogen

[1], r
p
E = 0.84087(39) fm, and the CODATA value determined from scattering and spectroscopy

with electrons [2], r
p
E = 0.8775(51) fm. The way to determine the proton radius r

p
E from scatter-

ing data is to measure the slope of the electric form factor G
p
E(Q

2) as a function of the squared-

momentum transfer Q2 as Q2 approaches zero. There is controversy surrounding finding the radius

from fitting the scattering data: some claim to find a small radius from scattering data [3, 4, 5]

and others argue that only a large radius is compatible with the data [6, 7, 8]. On the lattice, the

same approach is usually followed. However, the smallest nonzero Q2 reached on the lattice with

standard methods and a large volume of (5.6 fm)3 is about 0.05 GeV2, whereas the smallest Q2

reached in scattering experiments is below 0.005 GeV2. Therefore, obtaining a reliable radius from

fitting to lattice form factor data may be challenging. This motivates the need for a direct calcula-

tion of the radius without fitting to form factors. For the case of a pion, it was shown in [17] that

the Rome method for momentum derivatives could be used to calculate the pion charge radius with

finite-volume effects that are exponentially suppressed, with asymptotic behaviour ∼√
mπL e−mπ L.

In the following, we present a method for calculating the nucleon Dirac radius directly at

Q2 = 0. Our approach is based on calculating the momentum derivatives of the two- and three-

point functions using the Rome method [9], as explained in section 2. A ratio of the two- and

three-point functions is then constructed and by calculating the momentum derivatives of this ratio

at Q2 = 0 we are able to extract the anomalous magnetic moment κ = F2(0) and Dirac radius

r2
1 =

−6
F1

dF1

dQ2

∣
∣
∣
Q2=0

(sections 3 and 4). Our results for both quantities are shown in section 5.

2. Momentum derivatives of the two-point and three-point functions

For calculating the momentum derivatives of the correlation functions, we need to consider

quark propagators with smeared- and point-sources and sinks. This is shown in the following:

Without smearing: Let N denote a proton or neutron field. The two-point function can be written

as:

C2(p,x
0,z0)αβ = ∑

x

e−ip(x−z)〈Nα(x)N̄β (z)〉

= ∑
x

e−ip(x−z)εabcεde f fαγδε f̄βζ ηθ

〈
G

a f
γθ (x,z)G

be
δη(x,z)G

cd
εζ (x,z)−Gac

γη(x,z)G
b f

δθ
(x,z)Gcd

εζ (x,z)
〉

= ∑
x

εabcεde f fαγδε f̄βζ ηθ

〈
G

a f
γθ (x,z)G

be
δη(x,z)G

cd
εζ (x,z;p)−Gac

γη(x,z)G
b f

δθ
(x,z)Gcd

εζ (x,z;p)
〉
,

(2.1)

where fαβγδ is the spin tensor determining the quantum numbers of the nucleon operator N, G(x,z)

is the quark propagator and G(x,z;p) = e−ip(x−z)G(x,z). As shown in [9], the first and second
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momentum derivatives of a quark propagator at zero momentum are given by:

∂

∂ p j
G(x,y;p)

∣
∣
p=0

=−i∑
z

G(x,z)Γ j
V G(z,y), (2.2)

∂ 2

(∂ p j)2
G(x,y;p)

∣
∣
p=0

=−2∑
z,z′

G(x,z)Γ j
V G(z,z′)Γ j

V G(z′,y)−∑
z

G(x,z)Γ j
T G(z,y), (2.3)

where

Γ
j

V/T
G(z,y)≡U

†
j (z− ̂)

1+ γ j

2
G(z− ̂,y)∓U j(z)

1− γ j

2
G(z+ ̂,y). (2.4)

For connected diagrams, the three-point function, with current OΓ = q̄Γq and zero sink momentum

p′ = 0, can be written as:

C3(p,x
0,y0,z0)αβ = ∑

x,y

e−ip(y−z)〈Nα(x)OΓ(y)N̄β (z)〉= ∑
y

〈GS(y)ΓG(y,z;p)〉, (2.5)

where GS(y) is the sequential backward propagator, which is independent of p. Only the forward

propagator G(y,z;p) needs to be expanded using 2.2 and 2.3. Hence, no additional backward

propagators are needed. The Rome method can be understood as doing a calculation with twisted

boundary conditions and then taking the derivative with respect to the twist angle at zero twist [17].

With smearing: In the two-point function, we have the smeared-source smeared-sink propaga-

tor

˜̃G(x,y;p) = e−ip(x−y) ∑
x′,y′

K(x,x′)G(x′,y′)K(y′,y)

= ∑
x′,y′

e−ip(x−x′)K(x,x′)
︸ ︷︷ ︸

K(x,x′;p)

e−ip(x′−y′)G(x′,y′)
︸ ︷︷ ︸

G(x′,y′;p)

e−ip(y′−y)K(y′,y)
︸ ︷︷ ︸

K(y′,y;p)

,

where K is the smearing kernel. The momentum derivatives can then be calculated using the prod-

uct rule along with 2.2 and 2.3. Denoting the momentum derivative with ′ for shorter notation,

(KGK)′ = K′GK +K(GK)′, (2.6) (KGK)′′ = K′′GK +2K′(GK)′+K(GK)′′. (2.7)

For the smeared-source point-sink propagator, which is needed for the three-point function, we get:

(GK)′ = G[−iΓV GK +K′], (2.8) (GK)′′ = G[−2iΓV (GK)′−ΓT GK +K′′]. (2.9)

Gaussian Wuppertal smearing is given by K(x,y;p)=∑x′,x′′,... K0(x,x
′;p)K0(x

′,x′′;p)...K(x
′...′ ,y;p)

︸ ︷︷ ︸

NW

, with

K0(x,y;p) = e−ip(x−y) 1

1+6α

(

δx,y +α
3

∑
j=1

[

U j(x)δx+̂,y +U
†
j (x− ̂)δx−̂,y

]
)

=
1

1+6α

(

δx,y +
3

∑
j=1

α
[

eip j

U j(x)δx+̂,y + e−ip j

U
†
j (x− ̂)δx−̂,y

]
)

. (2.10)

The mth derivative of K0 at zero momentum is equal to

K
(m)
0 (x,y)≡

( ∂

∂ p j

)m

K0(x,y;p)

∣
∣
∣
∣
∣
p=0

=
α

1+6α

[

imU j(x)δx+̂,y +(−i)mU
†
j (x− ̂)δx−̂,y

]

. (2.11)
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The first and second derivatives of smearing with NW iterations, K = K
NW

0 , can be computed itera-

tively using (KN
0 )

′ = K′
0KN−1

0 +K0(K
N−1
0 )′, (KN

0 )
′′ = K′′

0 KN−1
0 +2K′

0(K
N−1
0 )′+K0(K

N−1
0 )′′.

3. Ground-state contribution to correlation functions

We will be tracing the correlators with polarization matrices that contain the projector (1+

γ0)/2, so that we can effectively write the overlap matrix elements as 〈0|Nα(0)|N(p,s)〉=Z(p)uα(p,s),

[15, 16] . Here and in the following we use Minkowski-space gamma matrices. The Dirac and Pauli

form factors, F
(N,q)

1 (Q2) and F
(N,q)

2 (Q2), parametrize matrix elements of the vector current

〈N(p′,s′)|q̄γµq|N(p,s)〉= ū(p′,s′)F [γµ ,p′,p]u(p,s), (3.1)

with the short-hand notation F [γµ ,p′,p] = F
(N,q)

1 γµ +F
(N,q)

2
iσ µν (p′−p)ν

2m
, where Q2 =−(p′− p)2.

Having T = |x0 − z0| and τ = |y0 − z0|, the ground-state contributions to the two- and three-point

functions (for p′ = 0) are:

C2(p,T )αβ =
Z2(p)

2E(p)
e−E(p)T (m+ /p)αβ , (3.2)

C3(p,τ,T )αβ =
Z(0)

2m

Z(p)

2E(p)
e−m(T−τ)e−E(p)τ2m

[
F (γµ ,0,p)(m+ /p)

]

αβ
. (3.3)

4. Momentum derivatives of the ratio

Because we don’t know how Z(p) depends on the momentum, we need to compute derivatives

of the ratio of three-point and two-point functions. We set p′ = 0 and p = ke j, where e j is the unit

vector in j-direction. We compute the following ratio:

Rαβ (k,τ,T ) = RN(k,τ,T )αβ RA(k,τ,T ), with (4.1)

RN(k,τ,T )αβ =
C3(k,τ,T )αβ

√

C2(p′ = 0,T )C2(k,T )
, RA(k,τ,T ) =

√

C2(k,T − τ)C2(p′ = 0,τ)

C2(p′ = 0,T − τ)C2(k,τ)
. (4.2)

For computing the first and second momentum derivatives of this ratio we need:

R′
N(k)αβ =

−C′
2(k)C3(k)αβ +2C2(k)C

′
3(k)αβ

2
√

C2(0)C2(k)3
, (4.3)

R′′
N(k)αβ =

(3[C′
2(k)]

2 −2C2(k)C
′′
2 (k))C3(k)αβ +4C2(k)(−C′

2(k)C
′
3(k)αβ +C2(k)C

′′
3 (k)αβ )

4
√

C2(0)C2(k)5
. (4.4)

where, for more readability we suppress τ,T parameters, use the notation C2(k) = Tr
(

1+γ0

2
C2(k)

)

and denote the derivatives with a prime e.g. C′
2(k)≡

dC2(k)
dk

. We know that C′
2(0) = 0 in the infinite-

statistics limit. Hence, we can eliminate this from the ratios. Similarly, we can calculate R′
A(k) and

R′′
A(k) which can be used together with 4.3 and 4.4 to calculate the first and second derivatives of

the ratio Rαβ . These derivatives are computed on the lattice directly at k = 0 as discussed earlier in

3
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section 2. The ground-state contributions are equal to:

Rαβ (k) =
[F (k)(m+Eγ0 − kγ j)]αβ

8
√

2E(E +m)
, (4.5)

R′
αβ (k) =

[
F ′(k)(m+Eγ0 − kγ j)

]

αβ
+
[
F (k)(E ′γ0 − γ j)

]

αβ

8
√

2E(E +m)
−
[
F (k)(m+Eγ0 − kγ j)

]

αβ
(2E +m)E ′

16
√

2[E(E +m)]3/2
,

(4.6)

and R′′
αβ (k) can be calculated in a similar way. We use the continuum dispersion relation E(k) =√

m2 + k2, which implies Q2 = 2m
√

m2 + k2 −2m2, and find that at k = 0, the second derivative is

needed to obtain the slope of F1:

dF1

dk

∣
∣
∣
k=0

=
dQ2

dk

∣
∣
∣
k=0

dF1

dQ2

∣
∣
∣
Q2=0

= 0,
d2F1

dk2

∣
∣
∣
k=0

= 2
dF1

dQ2

∣
∣
∣
Q2=0

. (4.7)

Furthermore, we have at k = 0, E(0) = m, E ′(0) = 0, E ′′(0) = 1/m and,

F (0) = F1(0)γ
µ , F

′(0) = F2(0)
iσ µ j

2m
, F

′′(0) = 2
d

dQ2
F1(0)γ

µ −F2(0)
iσ µ0

2m2
. (4.8)

Using Γpol = (1+ γ3γ5)
1+γ0

2
, we find nonzero results for the following values of the index µ (la-

beling the components of the vector current),

Tr[R(µ = 0)Γpol ] = F1, Tr[∂1R(µ = 2)Γpol ] =− i

2m
(F1 +F2), (4.9)

Tr[∂2R(µ = 1)Γpol ] =
i

2m
(F1 +F2), Tr[∂ 2

1,2,3R(µ = 0)Γpol ] =− 1

4m2
(F1 +2F2)−

1

3
F1r2

1, (4.10)

with ∂i =
∂

∂ pi and r2
1 =

−6
F1

dF1

dQ2

∣
∣
∣
Q2=0

. From equations 4.9 and 4.10 we find the following relations

for the anomalous magnetic moment κ and Dirac radius r1:

κ =−2m Im(Tr[R′(µ = 2) Γpol])−Tr[R(µ = 0) Γpol], (4.11)

r2
1 =

12m Im[R′(µ = 2) Γpol]+3Tr[R(µ = 0) Γpol]−12m2 Tr[R′′(µ = 0) Γpol]

4m2 Tr[R(µ = 0) Γpol]
, (4.12)

where we average over equivalent vector components and directions:

Tr[R′(µ = 2)Γpol ] =
1

2
(Tr[∂1R(µ = 2) Γpol ]−Tr[∂2R(µ = 1) Γpol ]).

Tr[R′′(µ = 0)Γpol ] =
1

3
(Tr[∂ 2

1 R(µ = 0) Γpol ]+Tr[∂ 2
2 R(µ = 0) Γpol ]+Tr[∂ 2

3 R(µ = 0) Γpol ]). (4.13)

5. Results and conclusions

We perform lattice QCD calculations using a tree-level Symanzik-improved gauge action

[18, 21] and 2+1 flavors of tree-level improved Wilson-clover quarks, which couple to the gauge

links via two levels of HEX smearing, at the physical pion mass mπ = 135 MeV, lattice spacing

a= 0.093 fm, and a large volume L3
s ×Lt = 644 satisfying mπL= 4. We are measuring the isovector

combination u− d of the three-point functions, where the disconnected contributions cancel out.

Furthermore, we perform measurements using three source-sink separations T/a ∈ {10,13,16}

4
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Quantity Traditional method Derivative method

κv 3.74(14) 3.71(35)

[rv
1]

2 [fm]2 0.55(9) 0.45(28)

Table 1: A comparison between the derivative method and the traditional one

ranging from 0.9 fm to ∼ 1.5 fm, and we are using the summation method [13, 14] for remov-

ing contributions from excited states. We apply our analysis on 442 gauge configurations, using

all-mode-averaging [10] with 64 approximate samples and one high-precision bias correction per

configuration. The “plateau plots” in Figure 1, show Fv
2 (0) (left-hand side, using 4.11) and [rv

1]
2/a2

( right-hand side, using 4.12) from the ratio method, as well as the summation method. Figure 2

shows a comparison between the results we get for the anomalous magnetic moment κ = Fv
2 (0) and

the isovector Dirac radius [rv
1]

2 using the momentum derivative approach and what we get using the

traditional approach of measuring Pauli and Dirac form factors for each value of Q2 (on the same

ensemble) and then applying the z-expansion fit [11, 12]. Preliminary results are given in Table 1.

We confirm that our approach produces results consistent with those obtained using the traditional

method. However, we found that this approach yields large statistical uncertainties, especially for

the Dirac radius, which requires two momentum derivatives applied to a single quark line. There-

fore, putting one momentum derivative on each of two different quark lines, as was done in [17],

might be less noisy.
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Figure 1: Anomalous isovector magnetic moment (left) and isovector Dirac radius (right). For both κ and

[rv
1]

2/a2, results from ratio method are shown using source-sink separations T/a ∈ {10,13,16}, as well as

the summation method.
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Figure 2: Isovector Dirac (left) and Pauli (right) form factors. The blue points show results from the

standard method and the red bands show a z-expansion fit to those points. The green band (left) and point

(right) show the slope and value of the respective form factor at Q2 = 0 , computed using the momentum

derivative method. The black curves result from a phenomenological fit to experimental data by Kelly [19].
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