10

15

20

25

Biogeosciences Discuss., doi:10.5194/bg-2016-410, 2016
Manuscript under review for journal Biogeosciences
Published: 5 October 2016

(© Author(s) 2016. CC-BY 3.0 License.

Isotopic approaches to quantifying root water wuptake and
redistribution: a review and comparison of methods

Youri Rothfussl, Mathieu Javaux '

'Institute of Bio- and Geosciences, IBG-3 Agrosphere, Forschungszentrum Jiilich GmbH, Jiilich, 52425, Germany

’Earth and Life Institute, Environnemental Sciences, Université catholique de Louvain (UCL), Louvain-la-Neuve, 1348,
Belgium

3Department of Land, Air and Water Resources, University of California Davis, Davis, California, 95616, USA.

Correspondence to: Youri Rothfuss (y.rothfuss @fz-juelich.de)

Abstract. Plant root water uptake (RWU) and release (i.e., hydraulic redistribution — HR, and its particular case hydraulic
lift — HL) have been documented for the past five decades from water stable isotopic analysis. By comparing the (hydrogen
or oxygen) stable isotopic composition of plant xylem water to those of potential contributive water sources (e.g., water from
different soil layers, groundwater, water from recent precipitation or from a nearby stream) authors could determine the
relative contributions of these water sources to RWU. Other authors have confirmed the existence of HR and HL from the
isotopic analysis of the plant xylem water following a labelling pulse.

In this paper, the different methods used for locating / quantifying relative contributions of water sources to RWU (i.e.,
graphical inference, statistical (e.g., Bayesian) multi-source linear mixing models) are reviewed with emphasis on their
respective advantages and drawbacks. The graphical and statistical methods are tested against a physically based analytical
RWU model during a series of virtual experiments differing in the depth of the groundwater table, the soil surface water
status, and the plant transpiration rate value. The benchmarking of these methods illustrates the limitations of the graphical
and statistical methods (e.g., their inability to locate or quantify HR) while it underlines the performance of one Bayesian
mixing model, but only when the number of considered water sources in the soil is the highest to closely reflect the vertical
distribution of the soil water isotopic composition. The simplest two end-member mixing model is also successfully tested
when all possible sources in the soil can be identified to define the two end-members and compute their isotopic
compositions. Finally, future challenges in studying RWU with stable isotopic analysis are evocated with focus on new
isotopic monitoring methods and sampling strategies, and on the implementation of isotope transport in physically based

RWU models.
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1 INTRODUCTION

Root water uptake (RWU) is defined as the amount of water abstracted by a root system from soil over a certain period of
time. Understanding the relation between the distributions of soil water, roots, RWU location and magnitude, and root
hydraulic properties is important for managing soil water and plant water status (e.g., by irrigation), developing new plant
genotypes more tolerant to drought or tackling ecological questions in water-limited ecosystems, such as the competition for
soil water by different plants.

RWU is principally driven by evaporative flux taking place in the leaves (i.e., transpiration) and its magnitude depends on
the atmospheric evaporative demand and stomatal opening. The latter depends amongst others on leaf water status and stress
hormonal signals from the roots transported to the leaves (e.g., Huber et al., 2015; Tardieu and Davies, 1993). Leaf water
status and hormonal signals are related to the soil water potential distribution and to the plant hydraulic architecture (Huber
et al., 2015). The spatial distribution of RWU is very variable in time in space, depends on the presence of roots but also on
the root’s ability to extract water. This ability is a function of radial conductivity but axial conductance may also limit water
flow in younger roots or when cavitation occurs. The flux of water depends also on soil water availability: a highly
conductive root segment will not be able to extract water from a dry soil. Locally, this is the difference of water potential
between the root and the soil which drives RWU, and its magnitude is controlled by the radial hydraulic resistances in the
rhizosphere, at the soil root interface and in the root system (Steudle and Peterson, 1998). The actual RWU profile is thus a
combination of different aspects: the root ability to extract water (characterized by the amount of roots and their hydraulic
properties), the ability of the soil to fulfill the plant water demand, and the water potential difference between soil and root
(Couvreur et al., 2014).

Plants have numerous mechanisms to cope with heterogeneous soil water distribution, and adapt their RWU rate distribution:
adaptive root growth, adaptive root conductivity (Javaux et al., 2013), exudation (Carminati et al., 2016). A particular
process, which has attracted the attention of plant breeders and ecologists is the ability of plants to extract water from non or
less water limited soil areas with potentially low root lengths densities, known as root water uptake compensation (Heinen,
2014). To describe the RWU rate in soils, we will use the root water uptake flow per volume of soil, defined as S [L3 L’ T'l]
by reference to the sink term of the Richardson (1922) equation (Vereecken et al., 2016). According to Couvreur et al.
(2012), root compensation is defined in the present article as the process that decreases or increases RWU at a certain
location compared to the water uptake from that location when the soil water potential would be uniform in the root zone.
Thus, the distribution of the S(x,y,z) is a sum of two spatially distributed components:

S Y,2) =8 iy (%, 7, 2) + S (4,3, 2) M
where x, y and z are the 3-D spatial coordinates, Sy,y is a term proportional to the root distribution and Scom, the
compensatory part of the RWU distribution. The first term on the right-hand side of Eq. (1) is always positive while the
second one can be either positive or negative. Figure 1 illustrates how this equation affects S distribution in a one-

dimensional (1D) space. When there is no compensation (Scomp(X,y,2) = 0), the RWU distribution follows the root distribution
3
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(i.e., highest at the surface and lowest in the deepest layer, Fig. 1a). When S¢omp(x,y,2) < 0 but its absolute value is lower than
Sunin (4,¥,2), then S(x,y,7) is positive and different from the root vertical distribution. In case Sy,y (x,y,z) is small, as in Fig. lc,
Scomp(X,y,2) can locally be higher in absolute value and S(x,y,z) can be locally negative which implies that there is a water
efflux out of the root.

The water efflux at certain locations is called root hydraulic redistribution (HR, Burgess et al., 1998) or hydraulic lift (HL,
Richards and Caldwell, 1987) as a specific case of HR in which fluxes in the root system are vertically upward. In their
review, Neumann and Cardon (2012) discussed that the magnitude of HR observed in different studies varied from 0.03 mm
d! (brasilian Cerrado, Scholz et al., 2010) to 3.50 mm d! (Artemisia Tridenta, Ryel et al., 2003). Several authors have also
raised the question of the “ecohydrological interest” for a plant to release water to the upper/dryer soil layers, therefore
potentially providing water to shallow-rooted plants and enhancing competition for space and nutrients. Some studies
suggested that HL could increase nutrient mobility and enhance biogeochemical processes by providing moisture to the dryer
soil layers (Caldwell et al., 1998; Prieto et al., 2012; Snyder et al., 2008).

Despite its importance, there is a lack of measurements of RWU, related to the difficulty of measuring root and soil water
fluxes. Often soil water content change is used as a proxy for RWU. Yet, as change of soil water content with time is not due
to root extraction only (i.e., soil water redistribution can also occur), the assessment of RWU based on water content
distribution alone is not possible in conductive soils (Musters and Bouten, 2000). Rather, the full soil water flow equation
accounting for root uptake and soil water redistribution must be solved in an inverse mode, and, with an accurate knowledge
of soil and root properties RWU distribution can be inferred (Guderle and Hildebrandt, 2015; Hupet et al., 2002; Musters and
Bouten, 1999; Vandoorne et al., 2012). Nuclear magnetic resonance (NMR) imaging has been suggested as an adequate
technique to measure water flow velocity in xylem vessels but no application exists yet on living roots in soils (Scheenen et
al., 2000). More recently, Zarebanadkouki et al. (2012) could measure for the first time RWU in porous media by combining
a tracer experiment monitored by neutron tomography with inverse modelling of a transport equation. Yet, this was done
under controlled conditions while there is no standard method to monitor three dimensional water uptake distribution of
growing roots in situ. In woody plants, in which roots are thick enough, Nadezhdina et al. (2010; 2012; 2015) used sap flow
measurements in roots to quantify hydraulic redistribution.

Since the seminal work of Zimmermann et al. (1967) which reported that RWU of Tradescantia fluminensis occurred in the
absence of fractionation against water oxygen stable isotope, water stable isotopologues (‘H?*H'°0 and 'H,'®0) have been
frequently used to identify and quantify root water uptake and redistribution in soils through the measurements of their
natural (and artificial) isotopic abundances. Methods include simple graphical inference to more sophisticated statistical
methods, i.e., two-end members and multi-source linear mixing models. While the former attempts to locate the “mean root
water uptake” in the soil, the latter category of methods provides profiles of relative contributions to transpiration flux across

a number of defined soil layers.
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This present paper (i) aims at reviewing these methods and (ii) proposes to compare them against each-other during a series
of virtual experiments differing in the water and isotopic statuses in the soil and the plant. Prior to the review and inter-
comparison, the paper reports on the mechanisms at the origin of the spatiotemporal dynamics of natural isotopic abundances
in soil and on the background knowledge of isotopic transfer of soil water to and from roots. Finally, we address future
challenges to be undertaken such as the dynamic isotopic assessment of HR. We also evoke opportunities offered by novel

isotopic monitoring tools which provide unpreceded high frequency isotopic measurements.

2 THEORETICAL BACKGROUNDS

The temporal and spatial variations in natural isotopic abundances observed within the soil-plant system allow for
reconstruction of S profiles. These variations result from isotope-specific fractionation between different phases at
thermodynamic equilibrium and during non-equilibrium phase transition, i.e., when there is a net flux between different
phases as for instance during evaporation. In this section, we briefly review process based analytical models accounting for
isotopic fractionation that were first proposed for (i) free water (section §2.1) and (ii) later for matric-bound water in a bare
soil (section §2.2). Finally, (iii) we report on the absence of isotopic fractionation during RWU for most of the documented

plant species and on the simple mixing model which is at the basis of any isotopic study on RWU (section §2.3).

2.1 Isotopic effects during free water evaporation

In a closed liquid water—water vapor isothermal system at water vapor saturation (relative humidity = 100 %) or at
thermodynamic equilibrium, the difference between the liquid and vapor (hydrogen or oxygen) isotopic compositions (d; and
oy [-, expressed in %o relative to the Vienna-Standard Median Ocean Water international isotope reference scale],
Gonlfiantini, 1978) is a function of the system temperature solely and is named “equilibrium isotopic fractionation factors”
(0eq [-], for a complete list of symbols see Appendix A). Majoube (1971) and Horita and Wesolowski (1994), among other
authors, gave empirical expressions (i.e., closed-form temperature dependent equations) for these equilibrium fractionation
factors.

When the system is no longer closed and a difference in water vapor partial pressure exists between the air layer in direct
contact with the liquid surface and the atmosphere above (referred to as “free” atmosphere), water vapor is transferred from
the liquid phase to the air layer, i.e., evaporation (E) occurs. In analogy to an electrical circuit (i.e., a Rideal-Langmuir
linear-resistance model, Brutsaert, 1982), E can be calculated from the vapor pressure difference and a transfer resistance (r)
to vapor transport across the air layer between the evaporating surface and the free atmosphere. Following the same electrical
analogy, vapor transport of isotopologues (E;) is a function of the difference of vapor isotopic composition between the air
layer in contact with liquid water and the free atmosphere and a transfer resistance (r;). In a simple yet comprehensive model

Craig and Gordon (1965) divided the air layer into two consecutive layers with different aerodynamic conditions. In a first
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sub-layer (with transfer resistances rg¢r and rgier; for lighter and heavier isotopologues, respectively), vapor transfer is purely
diffusive whereas in a second layer (with transfer resistances r,q and r,q; for lighter and heavier isotopologues, respectively)
it is purely advective, i.e., controlled by turbulence. Since the diffusion coefficient of the heavier isotopologues are smaller
than that of 'H2'6O, r; is greater than r. Note that the difference between r; and r originates from the difference between rgg
and rgr; whereas ryg = r,q;. In this model, thermodynamic equilibrium conditions still prevail in the air layer in contact with
the evaporating surface, termed “liquid-vapor interface” of isotopic composition di,. The isotopic composition of the
evaporated water vapor (Jg), defined as the ratio Ei/E, depends on the ratio of the resistances r/r. The latter ratio, named
“kinetic isotopic fractionation factor” (ay, [-]) depends on the relative importance (or development) of each sub-layer and
contributes producing an evaporated vapor depleted in heavy isotopologues with respect to the vapor at the liquid-vapor
interface (i.e., dg < Jyy). In turn, and depending on the turnover of the system (ratio E/V with V being the volume of the
evaporating liquid), but also on the evaporation state (i.e., permanent or transient), the liquid phase enriches itself in the
heavy isotopologues. Finally, when both E and V are constant over time, meaning that the loss of water is compensated by a
source of constant isotopic composition dsuce, an “isotopic steady state” might be reached where, by mass balance, dz =
Osource- FOT @ thorough review of the evaporation model of Craig and Gordon (1965), the reader is referred to Gat (1996) and
to the more recent paper by Horita et al. (2008).

In a two-dimensional (5'*0, 0°H) space, meteoric waters (e.g., precipitation, river water, groundwater) formed by

equilibrium processes (i.e., condensation of water vapor) fall onto a line whose slope equals approximately eight and whose

theoretical value is the ratio (a:q“ -1 /(ae':‘) —1)at the temperature of condensation. On the other hand, the water vapor produced

during a non-equilibrium process, such as evaporation, fall onto a so-called “evaporation line” with a slope of generally

lower than six and greater than 2. This is explained by the fact that a;;o > a;H which leads to a greater depletion of 'H,"*0

with respect to 'H’H'®0 in the produced water vapor. Gat (1971) showed that the value of this slope was fairly approximated
by the Craig and Gordon (1965) model, which was recently tested by Rothfuss et al. (2015).

2.2 Isotopic effects during bare soil evaporation and leaf transpiration

The Craig and Gordon (1965) model, originally developed for free evaporating water was later adapted to bound-to-matrix
soil water. In a study that laid the basis for future work in isotopic ecohydrology, Zimmerman et al (1967) provided a steady-
state analytical solution for soil water isotopic composition (ds) in a water-saturated isothermal bare sand profile from which
water evaporated at a constant rate. Under these steady-state and isothermal conditions, the upward (convective) liquid flux
of isotopologues, triggered by evaporation and rising from deeper layers equals the downward (diffusive) isotopic flux from
the evaporating surface which is enriched in the heavy stable isotopologues due to evaporation. A profile is obtained (Fig.
2a, black line) whose exponential shape depends on boundary conditions, i.e., the source water (e.g., groundwater) and
surface water isotopic compositions (dsuce and dgyp), the diffusion coefficient of the isotopologues in water, and of a soil

“tortuosity factor”, conceptually defined as the ratio of the geometrical to actual water transport distance. Barnes and Allison
6
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(1983) extended this formulation to a non-saturated sand column evaporating at isotopic steady state (0p = dsource)- In this
case, the evaporating surface (i.e., the liquid-vapor interface) can be located below the soil surface and splits the profile into
two regions where isotopic transport predominantly occurs either in the vapor phase above or in the liquid phase below it. At
isotopic steady state, the maximal isotopic enrichment is at the evaporation front (dgrat soil depth zgr) and can be simulated
with the Craig and Gordon (1965) model. The isotopic composition of the soil residual adsorbed water in the “vapor region”
above the evaporation front can be obtained by assuming thermodynamic equilibrium conditions and by applying Fick’s law,
and is shown to decrease linearly towards the value of the liquid water at the soil surface which is at thermodynamic
equilibrium with the ambient atmospheric water vapor (Fig. 2a, gray line). Finally, note that at transient state (0g # Jsource)s
the maximal isotopic enrichment in the soil profile does not point to the location of the evaporation front as was
demonstrated by Rothfuss et al. (2015). Instead, the depth where the steepest gradient in the isotopic profile is observed
corresponds to the evaporation front.

In a two-dimensional (5'%0, §°H) space, liquid soil water sampled below the evaporation front will plot on an “evaporation
line” with a slope typically lower than six and greater than two, depending on atmospheric and isotopic forcing, as a result of
kinetic processes during evaporation. Above the evaporation front and at isotopic steady-state, soil liquid water is in
equilibrium with a mixture of atmospheric water vapor (6'°0-6H slope ~8) and evaporated soil water vapor rising from the
evaporation front (2 < 5"%0-6’H slope < 6) (Barnes and Allison, 1988; Brunel et al., 1995; DePaolo et al., 2004). As a result,
an intermediate value for the slope is expected, depending on the mixing ratio of atmospheric water vapor to evaporated soil

vapor at a given soil depth.

2.3 Isotopic transfer to and from roots

As opposed to the removal of water vapor by evaporation, RWU has been described in a number of studies and over a wide
variety of plant species not to be associated with (kinetic) isotopic fractionation (Bariac et al., 1994; Dawson and Ehleringer,
1993; Thorburn et al., 1993; Walker and Richardson, 1991; Washburn and Smith, 1934; White et al., 1985; Zimmermann et
al., 1967). Consequently, for plants growing in homogeneous external conditions, e.g., in hydroponic solution, root xylem
sap water and external water have the same isotopic compositions. In natural soils where the liquid phase is not
homogeneous and a vertical gradient of isotopic composition due to evaporation exists, the root system takes up water at
different depths having thus different isotopic compositions.

Assuming that water transport time in roots is negligible, the isotopic concentration of the xylem sap water at the root tiller
(Cri M L'3]) can be modeled as the weighted average of the product of the soil water isotopic concentration (Cs [M L’3]) and

S (x,y,2):

[y S y2)de-dy-dz [Co(x.y.2)-S(xy,2)-dx-dy-dz

CTi — xX,¥,2 — X,9,2 (2)
[SGy.2)-dx-dy-dz I

X, ¥,z

7
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with Jg; [L? T the xylem sap flux at the root tiller. Following Braud et al. (2005):

C=p'Rmf%(5+l) 3)

with p [M L'3] the volumetric mass of water, R, [-] the Vienna-Standard Mean Ocean Water (V-SMOW) hydrogen or
oxygen isotopic ratio, M,, and M; [M L'3] the molar masses of 1H216O and isotopologue (IHZHIGO or 1H2180), respectively,

the xylem sap water isotopic composition at the root tiller Jr; [-, expressed in %o] can be expressed as:

[8,(x.y.2)-S(x, y,2)dx - dy-dz

Sy =2 (4a)
Ti JTi

with ds(x,y,z) [-, expressed in %o] the isotopic compositions of soil water at coordinates (x,y,z). Mostly, a one dimensional
description of root water uptake is used assuming that 6y and RWU do not vary in the horizontal direction and Jg is obtained
for discrete soil layers of depths z; (j € [1,n]) and thickness Az;= zj,, - z;. It is usually further hypothesized that J; equals the
transpiration flux 7'[L* T'] (low to no plant capacitance or phloem-xylem contact):

D05(z))-S(z)) Az, Y 56(2,)-8(z,) - Az,
_ e _ Jeln (4b)

Ti ZS(Zj)'AZj qr

Jj=Ln

where gr; = J1i/(Ax'Ay) = T/(Ax Ay) represents the sap flow rate in the root tiller per unit surface area [L T'l].

or; can be accessed at different locations in the plant depending on the species, but the sampling location should not be
affected by evaporative enrichment in heavier isotopologues or back-diffusion of the isotopic excess accumulated at the sites
of transpiration (stomatal chambers) in the leaf. For grasses and nonwoody plants, this is done by sampling the root crown
(e.g., Leroux et al., 1995), the aerial nodal roots (e.g., Asbjornsen et al., 2007), the meristematic petiole, or else the collars
(e.g., tillers) at the base of the plant (e.g., Dawson and Pate, 1996; Sanchez-Perez et al., 2008). In the case of ligneous plants
the fully suberized stem (Asbjornsen et al., 2007) or sapwood (e.g., White et al., 1985) is sampled. On the other hand, Js is
usually measured by sampling soil profiles destructively. Finally, water from plant and soil is predominantly extracted by
cryogenic vacuum distillation (Araguds-Araguas et al., 1995; Ingraham and Shadel, 1992; Koeniger et al., 2011; Orlowski et
al., 2013; West et al., 2006).

Lin and Sternberg (1992) and Ellsworth and Williams (2007), amongst other authors, reported however that for some
xerophyte (plants adapted to arid environments, e.g., Prosopis velutina Woot.) and halophytes species (plants adapted to
saline environments, e.g., Conocarpus erecta L.), and mangrove species (e.g., Laguncularia racemosa Gaert.), RWU led to
fractionation of water hydrogen isotopologues. For mangrove species, it was hypothesized that the highly developed
Casparian strip of the root endodermis would force water moving symplastically (i.e., inside the cells) and therefore crossing
cell membranes (Ellsworth and Williams, 2007). Water aggregates are then dissociated into single molecules to move across

these membranes. This demands more energy for 'H*H'°O than for 'H,'°O and 'H,'®0, thus preferentially affects "H*H'°O

8
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tranport and leads to a situation where xylem sap water is depleted in this isotopologue with respect to source water.
Meanwhile, this affects to a much lesser extent "H,'®O transport, so that no detectable isotopic fractionation of water oxygen
isotopologues is observed. It can be concluded that, for the majority of the studied plant species, either RWU does not lead to
isotopic fractionation or its magnitude is too low to be observable.

Hydraulic redistribution (e.g., hydraulic lift) can be conceptualized as a reverse RWU, defined as a negative S. In such case,
Eq. (4b) should only account for the positive S. It can be done by assuming that in this equation Js is 0 when S < 0.

Finally, plant water samples will, similarly to soil water samples, also fall onto an “evaporation line” of a slope lower than

eight in a two-dimensional (6"%0, 5'H) space (Javaux et al., 2016).

3 METHODS FOR CHARACTERIZING RWU FROM STABLE ISOTOPIC ANALYSIS

We distinguish two classes of methods: (i) the graphical method for inferring the “mean root water uptake depth” (z [L])
(§3.1), and (ii) statistical methods based on end-member mixing analysis (EMMA) (Barthold et al., 2011; Christophersen
and Hooper, 1992) for identifying x; [-], the contribution to RWU of some plant water source j (e.g., water in some soil layer,
groundwater, water from recent precipitation, or else from a nearby stream, §3.2). All methods have in common to use an
inverse modeling approach: the RWU distribution is obtained by optimizing model input parameters until the simulated Jr;
and/or the simulated soil isotopic profiles fit to the isotopic measurements.

Table 1 summarizes the 21 isotopic studies reviewed in this paper that use either one of the two classes of methods.

3.1 Graphical inference (GI)

This straightforward approach defines the “mean root water uptake depth” z , as the depth where Jds = d1;. Z conceptually
indicates to the soil depth where the plant root system, represented as one unique root, would extract water from.

There are cases where z cannot be unambiguously identified (e.g., z, and z, of case 2, Fig. 2b) due to the non-monotonic

character of the Jg profile (shown in black dashed line, case 2 of Fig. 2b). In order to define a mean RWU depth for such a
case one can derive a monotonously decreasing Jds profile by smoothing the profile (shown as symbols in Fig. 2b), e.g., by
averaging J in a number of layers using the following mass balance:
Y.54(z2))-0(z,)- Az,
551 =& &)
’ 2.0(z)) A,

J<J

where J represents the set of depths that belong to the J™ soil layer, with 6 [L* L?] and Az; [L] the soil volumetric water
content and thickness of the soil layer centered around depth z;. Due to this smoothing, the vertical resolution may be
drastically reduced. In the example presented Fig. 2b where a uniform 6 profile is assumed, the ds ; profile intersects with the

vertical line of value dy; deeper than for the initially non-monotonic Js profile, i.e., 7 (case 2, integrated Js profile) < 7, < Z,.

9
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Some authors rule out solutions in case of multiple mean root water uptake depths, e.g., by excluding the 7 solutions where
soil water content was low and/or soil water potential was high in absolute value (e.g., Li et al., 2007; see Table 1).

Note that while Eq. (5) provides a representative value for the isotopic composition that would be measured in soil layer J as
a function of those of the water in the set of depths, ds; is however equivalent to the isotopic composition “sensed by the
plant” only if the root profile is homogeneous, i.e., when RLD is constant with depth in that particular soil layer J.

The method of graphical inference may not only provide zZ but also its uncertainty caused by the uncertainty in measuring or;
(e.g., based on the precision of the isotopic analysis and/or sampling natural variability, shown as gray stripe in Fig. 2b). The
steeper the soil water isotopic profile, the larger is the uncertainty in determining z is. Figure 2b illustrates this with
estimated minimum and maximum z for the monotonic ds profile and for the vertically averaged profile. In the latter case,
the possible range of zis the largest. These ranges give first quantitative indication of variance around z . Finally, for a
complete “graphical assessment” of the variance of z , one should also consider the uncertainty associated with

measurements of the dg profile (not shown).

3.2 Statistical approaches
3.2.1 Two end-member (TM) mixing model

The TM method is a particular case of end-member mixing analysis (EMMA) and is based on the concept that (i) a plant
extracts water from two predominant water sources A and B (e.g., water in distinct upper and lower soil layers, or
groundwater and recent precipitation water etc.) in given proportions, (ii) there is no isotopic fractionation during water
uptake, and (iii) there is a complete mixing inside the plant of the contributing water sources A and B to RWU. The mass
conservation for isotopologues gives:

Jy=Jr+ " (6a)
ChJp=C,-J +Cy-Jy (6b)
with Ja, Jp, and Jr;, [L3 T‘l] (respectively JiA, J].B, and J% M T"]) the fluxes of water (respectively isotopologues) originating
from water sources A and B, and at the plant tiller. C,, Cg, and Cr; [M L’3] are the water sources A and B, and xylem sap

water measured isotopic concentrations. By introducing x = J , / J , and following Eq. (3), Eq. (6b) becomes:

O =x-0, +(1—x)- 04 @)
In this approach, dr; is therefore defined as the mean value of the isotopic compositions of water sources A and B (d, and Jg)
weighted by the proportions to Jy; of water volume extracted by the plant from water sources A and B, i.e., x and (1 — x),
respectively. The error associated with the estimation of x (g, [-, expressed in %o]) can be calculated following Phillips and

Gregg (2001):

10
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with o5, Os. > and O, the standard errors associated with the measurements of J,, Jg, and Oy, respectively. The
A i
sensitivity of Eq. (8b) to different values of Os 05 5 and O, can be tested by considering either minimal possible errors,

i.e., the analytical precision of the isotopic analyser (e.g., isotope ratio mass spectrometer, laser-based spectrometer), or by

taking into account additional errors involved with sampling procedure and vacuum distillation technique (see e.g., Rothfuss

et al., 2010). Equation (8b) also shows that, independently of the values considered for 05,05 ,0 Oy, Ox is inversely

proportional to 1/(d5 — Jg), indicating that the two end-members should have as much as possible distinct isotopic
compositions for a low standard error of x. Therefore, it is especially important, e.g., for partitioning between water from an
upper and lower portion of the soil profile, to properly define the thickness of these layers, so that they have distinct isotopic
compositions, and that the difference is considerably larger than the precision of the isotopic measurements. Figure 3 shows

for example that when (i) x is evaluated at 10 % and (ii) o , 0 ,and o, are estimated being equal to 0.02 %o (dark blue

solid line), (65 — Jg) should be greater than 0.75 %o (in absolute term) in order to reach a o, value lower than 5 %, i.e., more
than 37 times the error made on da, dg, and Jr;. To obtain the same standard error for x in case of a higher standard error on

the estimation of da, dg, and Jr; (e.g., Os,+05, and O, =0.1%o0), (s — 0p) should be greater than 3.00 %o (in absolute
term). This difference becomes much greater for Cs.+0s,> and o5 = 1.00 %o and reaches 42 %o (not shown in Figure 3). This

certainly highlights the advantage of artificially labelling soil water with water enriched (or depleted) in heavy isotopologues
for a more precise assessment of the relative contribution of soil water sources to RWU, as mentioned by Moreira et al.
(2000). In another study, Bachmann et al. (2015) labeled the upper and lower portion of the soil profile in a natural temperate
grassland with '®O-enriched and “H-enriched water, respectively. They defined two distinct (upper and lower) soil water
sources, for which they calculated the corresponding 0°H or 'O on the basis of measured soil water isotopic profiles and
using Eq. (5). They could find evidence against the so-called hypothesis of “niche complementarity” regarding plant water
use, which states that RWU of competitive plant species is spatially and temporally distinct, and that this distinction is

stronger at high species richness. Figure 3 illustrates also that for given (64 — dp), o5 , 05 ,and o values, the “optimal x
A B Ti

value” for a low o, is 50% (showed by the orange lines).

Table 1 displays a sample of studies that used the two end-member mixing approach. Authors could distinguish between
uptake of irrigation and precipitation water (Goebel et al., 2015), precipitation and groundwater (White et al., 1985), soil
water and groundwater (McCole and Stern, 2007), or else between stream water and soil water (Dawson and Ehleringer,

1991; McDonnell, 2014). Thorburn and Ehleringer (1995) could for instance locate the dominant source for RWU, i.e.,
11
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groundwater for their mountain and floodplain test-site and water from the soil between 0.3 and 0.4 meters depth for their
cold desert test-site. Other authors (e.g., Brunel et al., 1995) combined two mixing equations, i.e., one for each isotopologue,
into a single one. As infrared laser-based spectrometry now enables simultaneous measurements of §'°0 and 0°H at lower
cost, we believe that this dual-isotope approach (referred as “D” in Table 1) will or should gain in importance in isotopic
studies, especially in the context of pulse labelling experiments, which can “disconnect” the strong correlation between soil

water 0'°0 and 0°H, therefore provide two independent mixing equations, one for each isotopologue.

3.2.2 Multi-source (MS) mixing models

When there are more than two identified plant water sources contributing to RWU, e.g., water from different layers j (j € [1,

N]) in soil the profile, Eq. (7) becomes:

Sy :ix, -5 ©)

N
with N the number of plant water sources (e.g., soil layers) and z x. =1- As there are more water sources than (number of
J

j=1

mixing equations + 1), there is not a unique solution but an infinite range of possible solutions. However, some of these
solutions are not likely or possible based on background information or knowledge. A range of solutions that is most likely
based on prior information can be obtained using Bayesian methods. In the method proposed by Phillips and Gregg (2003),
the isotopic composition calculated for each considered x; combination (dr;) is compared with the measured value (Jtim). The
number of combinations depends on the value of contribution increment (i, %, typically 5 or 10 %) and the combinations for

which Jr; meets the following requirement are selected:

Sy <|Op 7] (10)

where 7 [-, expressed in %o], standing for “tolerance”, usually accounts for precision of the isotopic measurements or possible
errors during sampling and vacuum distillation steps. This multi-source mixing model approach strongly depends on 7 and i,
which therefore should be carefully chosen by the user. A smaller i also refines the analysis. For this, the program
“IsoSource” (https://www.epa.gov/sites/production/files/2015-11/isosourcevl_3_1.zip) is available (Phillips et al., 2005).
Wang et al. (2010) compared the outcome of the GI and MS approaches and came to the conclusion that even though the
latter did not solve the non-uniqueness problem and provided diffuse patterns of frequency that were difficult to interpret in
some cases (e.g., in case of a non-monotonic isotopic profile), it had the advantage over the former method of providing a
systematic and quantitative assessment of ranges of relative contributions.

Parnell et al. (2010) proposed to overcome two limitations of the approach of Phillips and Gregg (2003), i.e., its inability to
(i) account for uncertainty in the estimations of dr; and of the water sources isotopic compositions dJsj, and (ii) provide a

optimal solution rather than ranges of feasible solutions. For this they use a Bayesian framework (for details see also Erhardt
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and Bedrick, 2013; Moore and Semmens, 2008; Parnell et al., 2013), which allows uncertainty in the x; proportions and

incorporates a residual error term ¢; (normally distributed with mean equal to zero and variance o°):

M=

S =

1

0, 4 ©)

~.
Il

Note that the terms of (i) trophic enrichment factor (TEF [-, expressed in %o], see, e.g., meta-analysis of Vanderklift and
Ponsard, 2003) and (ii) isotope concentration dependency (Koch and Phillips, 2002; Phillips and Koch, 2002) originally
incorporated in the formulation of Parnell et al. (2010) for other applications are not present in Eq. (9”) since (i) no isotopic
fractionation during RWU is assumed and (ii) isotope concentration dependency applies only for situations where isotopic
compositions of different elements are measured and available.

Parnell et al. (2010) developed the program “Stable Isotope Analysis in R” (SIAR, https://cran.r-
project.org/src/contrib/siar_4.2.tar.gz) in which the initial (a priori) x; distribution is by default the Dirichlet distribution, of
which information can be partly specified by the user. A posteriori x; distribution is obtained by fitting the linear model to
data via a Metropolis-Hasting (Hastings, 1970; Metropolis et al., 1953) Markov Chain Monte Carlo algorithm.

Prechsl et al. (2015) apply both graphical and Bayesian approaches to evaluate the shift in 7 and change of RWU profile
following drought treatments (approx. 20 to 40 % precipitation reduction with transparent rainout shelters) in both
extensively and intensively managed grasslands. From both approaches it appeared that a shift in 7 was inexistent or not
observable from isotopic analyses. Another recent application of the Bayesian approach was performed by Volkmann et al.
(2016b), who took advantage of a newly developed soil isotopic monitoring method to confront high frequency dg profiles
time series to time series of Jr; (indirectly obtained from the isotopic measurement of the transpired water vapor and

assuming isotopic steady state, i.e., ;= d7) following a labelling pulse (see Table 1 for details on the study).

4 INTER-COMPARISON OF METHODS

We tested and compared the different methods (GI, TM, MS) during a series of virtual experiments. Mean RWU depths
(provided by the GI method) and x; distribution (provided by the TM and MS methods) were determined from soil and xylem
water oxygen isotopic composition distributions. While the former information was prescribed to the different methods, the
latter was calculated with the physically based analytical RWU model (referred to as AM) of Couvreur et al. (2012) (see

Appendix B1 for a description of the model and Appendix B2 on how it was run for the inter-comparison).

4.1 Methodology
4.1.1 Scenario definition

We developed eight virtual plausible scenarios of soil-plant systems under different environmental conditions. Each

environmental condition was defined as a combination of different total soil water potential distributions (resulting from the
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location of the groundwater table and weather conditions), soil water oxygen isotopic composition profiles, and actual
transpiration rate. The groundwater table was either shallow at -1.25 m depth (prefix “Sh”) or deep at -6 m depth (prefix
“De”); the soil water potential was considered to be at static equilibrium below the groundwater level; the soil surface was
either dry under evaporative conditions (suffix “Dr”), or wet, e.g., shortly after a rain event (suffix “We”); the transpiration
rate was either low (e.g., relevant at night, 7= 0.01 mm h™, suffix “ 1T”) or high (7 = 0.30 mm h™", suffix “ hT”). They all
relied on a common measured root length density vertical distribution of Festuca arundinacea. Table 2 reports the input
data. Note that, as hypothetized in Eq. (4b), transpiration and sap flow rates (i.e., per unit of surface area [L T™']) were

considered as equal.

4.1.2 Setup of the models

The two end-member mixing approach (TM) was tested against the isotopic data for two different cases: (i) two conjoint soil
layers spreading from 0 — 0.225 m and 0.225 — 2.00 m and (ii) two disjoint soil layers spreading from 0 — 0.225 m and 1.75 —
2.00 m. The latter case was designed to evaluate the impact of lacunar soil isotopic information on the calculation of x, i.e.,
when not all potential water sources are properly identified. Representative values of water oxygen isotopic compositions for
these soil layers (ds s, J € [LII]) were obtained from the mass balance (Eq. (5)) after interpolation of the measured soil water
content and Jg profiles at a 0.01 m vertical resolution.

For the multi-source mixing approaches of Phillips and Gregg (2003) (MSPG) and Parnell et al. (2013) (MSPa), the number
of potential water sources was initially fixed to three, i.e., water from the soil layers I (0.000-0.050 m), I (0.050-0.225 m),
and IIT (0.225-2.000 m). Upper and lower boundaries of these layers were defined to reflect the exponentially shaped
(monotonic) Js profiles (experiments ShDr and DeDr) or to smooth the non-monotonic Js profiles observed during
experiments ShWe and DeWe. MSPG and MSPa were also tested for eight soil layers (i.e., as many layers as measurement
points, I: 0.000-0.020, II: 0.020-0.050, III: 0.050-0.110, IV: 0.110-0.225, V: 0.225-0.400; VI: 0.400-0.750, VII: 0.750-1.500,
and VIII: 1.500-2.000 m). Increment and tolerance of the MSPG method were fixed at 10 % and 0.25 %o, respectively.
Similarly to the TM approach, profiles of Jds, (/ € [LIII] or [I,VIII]) were obtained from the mass balance (Eq. (5)) after
interpolation of the measured soil water content and dg profiles at a 0.01 m vertical resolution.

Finally for the MSPa method, uncertainty associated with Js measurements was set to 0.2 %o and the function
siarmcmcdirichletv4 of the SIAR R-package was run 500000 times (of which 50000 runs where discarded).

For a detailed description of the inter-comparison methodology, refer to Appendix C.

4.2 Results and discussion

S m(2)dz
T I(Ax - Ay)

Figure 4 displays xay, the simulated ratios (solid colored lines) simulated by the analytical model of Couvreur

et al. (2012) for the eight scenarios together with uncertainty (shaded areas) and the corresponding ot am (x1sd) (for a
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description on how uncertainty was assessed, refer to Appendix C). In general, at high T the compensation was negligible
and the Sy profile was mainly proportional to the RLD profile (Fig. 4b, d, f, and h). The only exception was a soil with deep
groundwater table and dry surface, where this dry layer limited root water uptake (DeDr_hT). At lower transpiration
demand, the S profile predicted by the Couvreur et al. (2012) model generally differed from the RLD profile (Fig.4a, c, e,
and g) due to the fact that the second term of Eq. (1) (i.e., Scomp, s€e also Eq. (B4) and (B4’) in Appendix B) was
proportionally larger. Water uptake from the upper layer was always more than proportional to the RLD, when this layer was
wetter, and vice versa. Water release to the soil (i.e., HR) was observed only for the soil with the deep groundwater table and
dry upper layer (DeDr_hT, Fig. 4e). From the graphical method GI, either a single or two distinct solutions for z (displayed
as gray-shaded horizontal stripes) could be retrieved, depending on the monotonic/non-monotonic character of the dg profile,
and ranged between —0.02 and —0.95 m.

Figure 5a displays the relative contribution to 7" of the upmost layer 0 — 0.225 m in case of two conjoint soil layers as
computed with the TM approach and a comparison with the results of the analytical model. Except for the very last two
virtual experiments (i.e., DeWe_IT and DeWe_hT), there was a very good agreement between TM and AM results: absolute
difference between xty and xay ranged between 1.5 % (ShDr_IT) and 6.3 % (ShDr_hT). During experiment DeDr_IT, The
TM approach estimated that x was equal to 12.3 % while the analytical model simulated hydraulic redistribution, i.e.,
excluded the layer 0 — 0.225 m as potential source. The significant difference between TM and AM results during
experiments DeWe_IT and DeWe_hT and the higher standard error associated with xty (o, displayed in the form of error
bars in Figure 5) were due to the small difference between the isotopic compositions of the defined soil water sources Jds; (—
6.0 %o) and g1 (—5.3 %o) as illustrated in section §3.2.1. Figure 5b gives the relative contribution to T of the layer 1.75 —2.00
m in case of two disjoint soil layers, i.e., when not all potential water sources are accounted for into the calculation of ds; and
Osn. In this case there were important disparities between xty and xay. The mean absolute difference between these two
estimates was equal to 43,5 (£17.8) %. Omitting some of the potential water sources contributing to 7" had in this second case
the consequence of artificially overestimate the contribution of the lowest layer. We therefore suggest to always attempting
to fully characterize the soil isotopic profile before aggregating the isotopic information when defining the two water
sources.

Figure 6 gives the relative contributions from soil layers I, II, and III (upper, middle, and lower panel, respectively) to T
following the method of Phillips and Gregg (2003) (xymspg, in %, displayed in the form of gray histograms) and the Bayesian
method of Parnell et al. (2010) (xymspa, in %, gray probability density curves). The colored vertical lines are x; am, Xii_am, and

S am(2)dz
T I(Ax- Ay)

X_ams the simulated ratios from layers I, II, and III. The color-shaded areas associated with x; s, Xi1_am, and

xm_am refer to their uncertainty by accounting for the uncertainty of the input data. As for Fig. 5, Jr;_am is reported above
each plot along with its standard deviation. X; vspg probability distribution was observed to be either narrow (e.g., DeDr_IT /

layer I, Fig. 5Sm) or broad (e.g., DeWe_hT / layer I), i.e., the range of the possible solutions for x; yspg Was relatively small
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or large (10 and 100 % respectively for these two examples). In general, both MSPG and MSPa statistical methods agreed
well with each other: the xysp, most frequent value (MFV, at the peak of the density distribution curve) was in most case
either located near the median value of the xyspg probability range (e.g., ShWe_IT / layer I, Fig. 5g) or matched exactly the
Xmspg unique value (i.e., DeDr_IT / layer I, Fig. Sm). In contrast, the statistical methods succeeded best in providing x
estimates similar to those of the model of Couvreur et al. (2012) in case of a shallow groundwater table and at low T only
(Fig. 5a-c and g-i), thus when water availability was high and root compensation was low. In these cases, x; ay Was included
in the estimated X; yspg range and the mean absolute difference (MD) between X; ay and xysp, MFV was equal to 8.6 %.
This difference was the greatest (129.2 %) for experiment DeDr_IT when HR was simulated by the analytical model (Fig.
5m-o).

Considering eight soil layers instead of three added uncertainty in the assessment of their relative contribution to T as
determined by the MSPG method: the estimated probability ranges increased in most of the cases (results not shown).
However it considerably improved the results of the MSPa method: the mean absolute difference between x; sy and the most
frequent xysp, value was equal to 4.7 % for the scenarios with a shallow groundwater table and low transpiration rate and
equal to 52.1 % in case of HR (Table 3).

Independent of the number of defined soil layers, lowering the value of increment to 5 % in the MSPG method refined the
analysis where the probability distribution was already narrow (i.e., in the case of a well identified xyspg value, e.g., Fig. Sm)
while it produced distributions that were flatter and contained less gaps when no clear solutions had emerged before (results
not shown). Artificially increasing the value of tolerance had the consequence that more solutions to Eq. (10) were found for
each experiment / transpiration value / layer combinations and vice versa (results not shown). An increase or decrease of a
factor 2 of the number of runs as well as the number of runs to be discarded from the analysis had only a marginal impact on
the density distribution curves obtained with the MSPa method in the case of three or four soil layers.

The modelling exercise illustrated the disparities of outcome between the graphical method on the one hand and the
statistical and mechanistic methods on the other: there simply cannot be a single or multiple “root water uptake depths” but
rather a continuous RWU profile (AM) or statistical solutions of contribution to transpiration (MSPG and MSPa). Significant
changes of Jr; do not necessarily mean important changes in the depth of RWU but rather slight (nevertheless significant)
modification of the RWU profile. The authors believe that the relatively novel statistical tools MSPG and MSPa presented in
this review should be therefore preferred over the GI method, especially since the two former are available as user-friendly
programs and packages and do not require significant computing time, therefore can be run locally on a personal computer.
As highlighted in this series of virtual experiments, the Bayesian method showed much more convincing results than the
method of Phillips and Gregg (2003), especially in the case of eight soil layers, illustrating the interest of reaching the best
vertical resolution and maximizing the number of identified potential sources.

One can also show from this inter-comparison of methods that labelling of soil water in either 'O or *H has potentials for

improving the different methods presented here theoretically if water is taken up by the roots from the labeled region
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predominantly. However this was never the case looking at the results of the analytical model. A dual isotope ('*O or *H)
labelling pulse experiment that would artificially disconnect the strong link between ¢'*0 and ¢°H would on the other hand

much more constrain the inverse problem and provide accurate estimate of contribution of S to transpiration flux.

5 CHALLENGES AND PROGRESSES
5.1 Isotopic assessment of hydraulic redistribution

HR (e.g., HL) has been observed using isotopic measurements in a number of studies (e.g., Caldwell and Richards, 1989;
Dawson, 1993; Kurz-Besson et al., 2006). However, in contrast to nondestructive “traditional” methods allowing for direct
monitoring of redistribution dynamics (i.e., psychrometry, time domain reflectometry, and frequency domain capacitance,
Brooks et al., 2002; Dawson, 1996; Richards and Caldwell, 1987; Wan et al., 2000), isotopic methods provide a destructive
and indirect assessment. These methods are based on (i) labelling of soil or roots of deep-rooted plants at a given depth in the
soil or at a certain location in the experimental field and (ii) measuring the Jr; of plants not having access to labeled water
(i.e., of which the roots do not reach the isotopic labeled depth or location). When HR occurs, the xylem sap water (of
measured isotopic composition dt;,) of these plants can be conceptualized as a mixture of antecedent soil water (at natural
isotopic abundance) and isotopically enriched water released to the soil by the deep-rooted vegetation. From simple mass
balance at the release location, Js at a given depth z in the soil and at time (#+Af) deviates from that at time ¢ as a function of
the (negative) S (i.e., HR or HL) at time ¢ and change of soil volumetric water content (6):

Szt + A1) - O(z,t + At) = 55(2,1)-O(2.1) = Sy Vig OV (2) = Sy e |S (2, 0)|-At (11)

If 6 and Js at times ¢ and t+Az, and J1; are measured, the water volume transported by the roots (Vyg, L3) can be calculated
knowing the volume of soil representative of the hydric and isotopic measurements (V, L*). Note that HR is observable at a
certain soil depth if and only if uptake and release locations in the soil have distinct water isotopic compositions. Finally, the
obtained volume can be compared with the water volume transpired by the vegetation on the following day.

To the authors’ knowledge, no precise observation (other than the study of Zegada-Lizarazu and Iijima, 2004) of change of
soil water isotopic composition has been attributed with certainty to hydraulic redistribution and simultaneously provided
amount of water involved in the process. Such observations however should be feasible under controlled experimental
conditions where (i) the initial soil water isotopic profile before labelling is known and (ii) natural isotopic changes (due to,
e.g., soil redistribution and moisture input from a precipitation event) can be avoided, and (iii) the lateral heterogeneity of
soil water and isotopic composition profiles can be minimized (see for instance the setups of Armas et al., 2012; Querejeta et
al., 2012). As highlighted in section 2.3, HR can be conceptualized as a negative S (Eq. (4b)) and should therefore be exempt

of isotopic fractionation. However, to the authors’ knowledge this point has not yet been proven experimentally.
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5.2 High frequency isotopic data and sampling strategies

For determination of Js, soil profiles are usually destructively sampled, typically with an auger down to a depth of a few
centimeters (Rothfuss et al., 2010) to a few meters (Moreira et al., 2000) (see Table 1), depending on the depths of the root
system and of the water table. The sampling depth interval should, when possible, match the exponential decrease of isotopic
composition (Wang et al., 2010) due to fractionating evaporation and it should capture sudden variations with time at the soil
surface due to precipitation, i.e., be minimal at the surface and maximal deeper in the soil profile where isotopic dynamics
are less pronounced. A minimal sampling interval at the surface is also crucial as it provides the isotopic composition of the
layer contributing the most to transpiration in the case of a low T flux (e.g., morning transpiration) under non-limiting water
availability. Not measuring this maximum soil isotopic composition (between precipitation event) can lead to a situation
where source partitioning is not feasible from isotopic measurements. Under field conditions (i.e., ~95 % of the studies
reviewed in this work, summarized in Table 1) soil material is generally not a limiting factor, thus can be sampled twice or
thrice to average out or characterize lateral heterogeneity without significant disturbance of the soil (Leroux et al., 1995).
Water from plant and soil materials is predominantly extracted by cryogenic vacuum distillation (Araguds-Araguds et al.,
1995; Ingraham and Shadel, 1992; Koeniger et al., 2011; Orlowski et al., 2013; West et al., 2006). This consists in (i)
introducing the plant or soil sample into an extraction flask attached to one end of the extraction line, while at the other end a
collection tube is connected, (ii) freezing the sample by immersing the collection flask into liquid nitrogen (temperature ~ —
200°C), (iii) pumping the extraction line down to a pressure of ~10~ mbar, (iv) heating the sample to a certain temperature (
~60 < T < ~100°C) depending on its nature while immersing the trap into liquid nitrogen. The water vapor produced
condenses in the trap following a stepwise procedure (~lasting one to a few hours), in order to avoid condensation elsewhere
on the water vapor path between sample and collection trap. Accuracy of this extraction method was shown to be maximal at
higher water content and for sandy soils and lower for soils with high clay content. In the latter case, extraction times should
be longer and temperatures higher to mobilize water strongly bound to clay particles, which has a distinct isotopic
composition from that of pore “bulk” water (Araguds-Araguds et al., 1995; Ingraham and Shadel, 1992; Oerter et al., 2014;
Sofer and Gat, 1972). In other studies, plant and soil waters are extracted following azeotropic distillation with kerosene as
solvent (e.g., Brunel et al., 1995; Thorburn and Ehleringer, 1995), or direct equilibration with CO, (Asbjornsen et al., 2007)
following the method of Scrimgeour (1995), or else the mild vacuum method (Dawson and Pate, 1996; Jeschke and Pate,
1995).

Certainly one of the main limitations of all isotopic approaches for quantifying RWU and HR is the destructive character of
isotopic sampling (see section 3.1) and associated offline analyses (sections 2.2 and 2.3). This usually leads to poor spatial
(maximum a few cm?) as well as temporal (minimum hourly) resolution of the inferred results, when comparing with
measuring frequency of other soil and plant state variables, e.g., soil water content and potential, and leaf water potential

(section 3.2.2). In addition, one may question the representativeness of plant samples, in which tissues (and thus water) with
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very different water residence time is mixed. Similarly, given the expected high lateral and temporal variability of the HR
process, the representativeness of ds should be questioned for soils, in particular when combined with 1D models.

Recently developed methods take advantage of laser-based spectroscopy which allows on-line and continuous isotopic
measurements in the gas phase. These methods rely on coupling a laser spectrometer with specific soil gas sampling probes
consisting of gas-permeable microporous polypropylene membranes or tubing. These membranes or tubing exhibit strong
hydrophobic properties, while their microporous structures allow the intrusion and collection of soil water vapor. Several
authors (Gaj et al., 2015; Gangi et al., 2015; Herbstritt et al., 2012; Rothfuss et al., 2013; Sprenger et al., 2015; Volkmann
and Weiler, 2014) could determine the soil liquid water isotopic composition in a nondestructive (yet invasive) manner from
that measured in the collected soil water vapor considering thermodynamic equilibrium between vapor and liquid phase in
the soil. In contrast to “traditional” isotopic methods, these novel isotopic monitoring methods have also the distinct
advantage of determining soil liquid water isotopic composition at very low water content, since water vapor, in contrast to
soil liquid water, is not limiting for analysis. These novel methods allow a vertical resolution down to 1 cm and an
approximately hourly time-resolution. However, they do not allow horizontal resolution along the tube and are greatly
sensitive to the carrier gas used (Gralher et al., 2016). In their opinion papers, McDonnell (2014) and Orlowski et al. (2016)
also urged for a comparison between methods, which was addressed by Gaj et al. (2015) and Pratt et al. (2015).

Leaf and plant gas chamber systems provide indirect means for a nondestructive determination of dr;, i.e., by either assuming
full steady-state conditions at the evaporative sites of the leaves (dr; = d7) (e.g., Dubbert et al., 2014; Volkmann et al.,
2016b). In the coming years, effort should be made towards developing novel methods for a direct and nondestructive
determination of Jt; based on the use of gas-permeable membranes, which was recently initiated for trees (Volkmann et al.,
20164a). This should be further investigated to test applicability to other (non-woody) plant species. This will imply the major
challenge of not disrupting the water columns in the active xylem vessels when installing such a membrane-based system.
Another potential issue to be investigated is the species-specific extent of water exchange between xylem and phloem

conductive tissues which might lead to isotopic “contamination” of the xylem sap water.

5.3 Call for a coupled experiments-modelling approach for determination of plant water sources and redistribution
on the basis of isotopic data

In order to fully benefit from the potential of water stable isotopologue analysis as tools for partitioning transpiration flux,
the authors call for a generalization of coupled approaches based on the confrontation of experimental data with a physically
based understanding of RWU processes.

Simple analytical models, such as the formulation of Couvreur et al. (2012), can be applied and confronted with isotopic
data. In comparison with statistical tools, such physical models provide profiles with high spatial resolution and lower
uncertainty, on the condition that all required (isotopic) data is available. We recognize that in comparison with the statistical

and conceptual methodologies presented in this review, using a physical (analytical or numerical) model implies the
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measurements of additional state variables to be fed as input to the model, and of one parameter (K, (When considering
the assumption Ky = Keomp valid, see Appendix B). Some of these variables are laborious to obtain (e.g., RLD) or not
straightforward to measure (Hs, Hy, and T) — especially in the field — but are mandatory to be able to determine contributions
to T across a set of identified water sources. In addition, they are necessary to gain insights into soil-plant interactions, e.g.,
dynamics of root function (active versus non-active roots in the soil profile) in water uptake and thus quantify the
disconnection between measured RLD and the prognostic variable SSF (see Appendix Bl) For doing this, controlled
conditions in state-of-the-art climatic chambers are ideal, as they allow reducing the inherent spatial heterogeneity present
under natural conditions and, thus, the deconvolution of environmental effects on RWU. Experimental facilities that not only
control atmospheric forcing (soil upper boundary conditions for latent and heat flow), but impose lower boundaries for the
soil compartment (e.g., drainage and capillary rise dynamics) and provide means to close the hydrological balance are
required. Moreover, macrocosm experiments (~m3 scale) should be favored over mesocosm (~dm3 scale) experiments to

avoid or reduce inherent side effects that would ultimately hamper mimicking natural conditions.
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6 CONCLUSION

Root water uptake is a key process in the global water cycle. More than 50% of total terrestrial evapotranspiration crosses
plant roots to go back to the atmosphere (Jasechko et al., 2013). Despite its importance, quantification of root water uptake
remains difficult due to the opaque nature of the soil and the spatial and temporal variability of the uptake process.

Water stable isotopic analysis is powerful and valuable tool for the assessment of plant water sources and for the
identification of hydraulic redistribution. In an inverse modelling framework, isotopic analysis of plant tissues and soil also
allow for obtaining species-specific parametrization of physically-based analytical and numerical RWU models. They
provide at the plant scale a unique way to tackle the difficulty of disentangling actual RWU profiles with root traits and
characteristics.

In this review we tried to highlight the importance of systematically reporting uncertainties along with estimates of
contribution to T of given plant water sources. The inter-comparison exercise could quantify the impact of the definition of
the plant water sources (i.e., whether they are spatially disjoint or not and whether their isotopic compositions values are
significantly different or not) on the outcome of the two end-member mixing model. The inter-comparison also illustrated
the limitations of the graphical inference method and the multi-source mixing model of Phillips and Gregg (2003), whereas it
underlined the performance of the Bayesian approach of (Parnell et al., 2013), which uses a more rigorous statistical
framework, if the number of considered water sources matches the number of isotopic measurements in the soil profile.
However, contrary to the analytical model none of the graphical and statistical methods could locate and quantify hydraulic
redistribution of water.

Finally, the authors call for (i) the further development of nondestructive and on-line isotopic measurement methodologies to
circumvent the necessity of sampling soil material and plant organs destructively, and (ii) a generalization of coupled
approaches relying on the confrontation between labelling experiments under controlled conditions and three dimensional

RWU numerical modelling.
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NN AW

Table 2
SOIL Shallow groundwater table (Sh) Deep groundwater table (De) RLD
DATA (cm cm®)
z(m) Dry surface conditions Wet surface conditions Dry surface conditions Wet surface conditions
(ShDr) (Shwe) (DeDr) (DeWe)
(] Hs s (] Hs Os (] Hs Ss (] Hs Ss
(cm® cm’®) (cm) (%) | (cmPcm®)  (cm) (%) | (cm*cm®)  (cm) (%o) (cm® cm™) (cm) (%o)
-0.01 0.235 -454 5 0.372 -2 -7 0.044 -9875 1 0.372 51 5 6.0
-0.03 0.325 -267 3 0.372 -8 -6 0.055 -3581 7 0.371 =77 -5,5 3.0
-0.07 0.347 -215 1 0.372 -1 -5 0.081 -1661 1 0.372 -14 -7 2.0
-0.15 0.360 -179 -4 0.372 -70 -6 0.105 -1165 -35 0.135 -869 -3,5 0.8
-0.30 0.367 -155 -6 0.370 -125 -6,5 0.122 -989 -4 0.134 -889 -4 0.5
-0.50 0.371 -135 -7 0.371 -135 7 0.165 -730 -5 0.165 -730 -5 0.4
-1.00 0.372 -125 -7 0.372 -125 -7 0.210 -620 6 0.210 -620 -6 0.3
-2.00 0.372 -125 -7 0.372 -15 -7 0.259 -600 -7 0.259 -600 -7 0.2
PLANT T H. T H. T H. T H.
DATA (mm h™) (cm) (mm h™) (cm) (mm h™) (cm) (mm h™) (cm)
IT 0.01 -587 0.01 -491 0.01 -2347 0.01 -918
hT 0.30 -12330 0.30 -12234 0.30 -14090 0.30 -12661

Table 2: Soil, plant, and isotopic input data for the different modelling approaches (depth (z) profiles of soil water
content @, total soil water potential Hg, soil water oxygen isotopic composition Js, root length density RLD,
transpiration rate 7, and leaf water potential H;) “collected” during eight virtual experiments differing in the depth
of the groundwater table (Shallow —Sh / Deep — De) and the water status at the soil surface (Dry — Dr / Wet — We).

35




Biogeosciences Discuss., doi:10.5194/bg-2016-410, 2016
Manuscript under review for journal Biogeosciences
Published: 5 October 2016

(© Author(s) 2016. CC-BY 3.0 License.

1 Table 3
Soil layer Shallow groundwater table (Sh)
(m) Dry surface conditions (ShDr) Wet surface conditions (ShWe)
Low T (ShDr_IT) High T (ShDr_hT) Low T(ShWe_IT) High T (ShWe_hT)
Xuspa Xam (1sd) Abs. Xuspa Xam(1sd) | Abs. Xwspa Xam(1sd) | Abs. Xuspa Xam(1sd) | Abs.
mfv(range) (%) diff. | mfv(range) (%) diff. | mfv(range) (%) diff. | mfv(range) (%) diff.
(%) (%) (%) (%) (%) (%) (%) (%)
0-0.02 1,1(0-34,6) 4.8(0,7)] 3.8 6(0-37) 10 9(1,3)| 49 17,5(0-48)] 134(1,4) 4,1 158(0-52,9) 11 2013 47
0.02-0.05 1,1(0-35,4) 7,3(09)| 62 5(0-37,8)|  8,7(0, ) 3,7| 13,1(0-41,5) 104(1)| 27| 74(0-428) 88(09)| 13
0.05-0.11 2,5(0-40,8) 107(12)] 83| 980-48.4) 113(1.1)| 15| 109(0-405)| 13201,1)| 22| 7.1(0-412)| 11.40171)| 44
0.11-0.225 | 14,5(0-56,6) 99(0,7)| 46| 139(0-47,2)| 9,7(0,5) 42| 11,3(0-45,6) 10(0,5) 1,4| 3,4(0-42,9)| 9,7(05)| 63
0.225-0.4 19,4(0-56,5) 10,6(0,3)| 88| 16(0-54,6)| 9,8(0,1)| 6,1 158(0-52,8) 9(0)| 69| 16,1(0-48,5)| 9,8(0,1)| 63
0.4-0.75 16,2(0-54,9) 16,3(0,2)| 00| 16,7(0-47,9)| 14,4(0,4)| 22| 17,5(0-44)| 12,7(0,5)| 4,8| 152(0-48,4)| 14,3(04)| 08
0.75-1.5 17,1(0-52,1) 26,7(1,8)| 9.6 18,4(0-46,1)| 23,2(1,9) 49| 158(0-47,9)| 20,8(1,9) 4,9 16,2(0-52,8)| 23(1,9)| 6.8
1.5-2 16,6(0-59,4) 13,7(1,8)| 28| 17,1(0-47,2)| 11,9(1,7)| 5,1 153(0-52,3)| 10,7(1,6)] 4.6| 16(0-51,4)| 11,8(1,7) 4,1
MD| 55 441 3.9 4.3
Soil layer Deep groundwater table (De)
(m) Dry surface conditions (DeDr) Wet surface conditions (DeWe)
Low T (DeDr_IT) High T (DeDr_hT) Low T (DeWe_IT) High T (DeWe_hT)
Xuspa Xam (1sd) Abs. Xuspa Xam (1sd) | Abs. Xuspa Xam (1sd) | Abs. Xuspa Xam (1sd) | Abs.
mfv(range) (%) diff. | mfv(range) (%) diff. | mfv(range) (%) diff. | mfv(range) (%) diff.
(%) (%) (%) (%) (%) (%) (%) (%)
0-0.02 1(0-42,2)| -169,5(15,8)| 170,4 1(0-40,9)[  51(0,7)] 41| 15(0-489) 23,6(23)] 22,2] 10,4(0-52,3)] 115(1,3)[ 1,1
0.02-0.05 1(0-41,7)|  -16,9(1,4)| 17,8] 2,2(0-452)| 7,9(09)| 56| 16,6(0-54,8) 18,4(1,6) 1,9 132(0-54) 9(1)| 41
0.05-0.11 1,2(0-44) 18,9(6)| 17,7| 53(0-47,2)| 11,6(1,2)| 63| 16,4(0-57,6)] 21(1,5)| 4,5| 16(0-50,5) 11,7(1,1)| 4.3
0.11-0.225 2,6(0-55) 27,7(5)| 25,1| 11,3(0-51,2)| 10,3(0,7)| 1,1 1,2(0-38,9) 3(0,2)| 1.8 12(0-43)|  9,4(0,5) 2.6
0.225-0.4 6,9(0-75) 33,3(3,8)| 26,4 17(0-50,5) 10,6(0,2) 6,3 0,8(0-38)| 1,3(04)| 04| 87(0-384) 9,5(0,1) 09
0.4-0.75 14,5(0-67,7) 57,3(3,3)| 42,9| 17,1(0-55,9)| 158(0,3)] 13| 4,5(0-46,2)| 6,9(0,8) 24| 154(0-52,5) 14,1(0,4)| 1.3
0.75-1.5 16,4(0-73,8) 98(0,6)| 81,6| 16,2(0-54,4)| 25,6(1,8) 9,3| 16,1(0-51,2)| 16,6(2,3) 05| 16(0-454)| 22,9(1,9)| 6,9
152 16,7(0-76,1) 51,1(3,5)| 34,4| 17,5(0-533)| 13,2(1,7)| 4,3| 17,9(0-53,2)| 9,2(1,8)| 88| 159(0-46,2)| 11,8(1,7)| 4,1
MD| 52.1 4.8 5.3 3.2
2 Table 3: Most frequent value (mfv) and range of the density distribution curve of the relative contribution to
3 transpiration across eight defined soil layers as determined by the Bayesian method of Parnell et al. (2010) (xyspa, %)
4 and mean relative contribution (with standard deviation) provided by the analytical model of Couvreur et al. (2012)
5 (xam> %). Profiles of relative contribution were computed for eight soil-plant virtual experiments differing in the
6 depth of the groundwater table (shallow — Sh / deep —De), the soil surface water status (dry — Dr / wet — We), and the
7 plant transpiration rate (low — 1T / high — hT). The absolute difference between the xy;sp, mfv and x,,, for each soil
8 layer (Abs. diff, %) and the mean absolute difference (MD) for each soil-plant experiment are also reported.

36




Biogeosciences Discuss., doi:10.5194/bg-2016-410, 2016
Manuscript under review for journal Biogeosciences
Published: 5 October 2016
(© Author(s) 2016. CC-BY 3.0 License.

— =

1

2

— OV N B W

FIGURES
Figure 1
o T T T o T T T o T T T
ol T IS) > T o[l ) 7
N N N
T ] < ] T 1
< < <
Tl 1 3 1 er T
%_ © © ©
o [ ] < ] er 1
°
B3
&gl 1= g |
2L i hd i eL — SuiH i
' ' ' 'comp
S
N N N
- [ 1 1 (@)1 A | | (o) - [ 1 (eH
-0.5 .0 -0.5 .0 -0.5 .0

Figure 1: Some examples of root water uptake sink term (S, in ah profiles (orange lines) conceptualized as the sum of
two vertically distributed components, the root water uptake term proportional to root distribution (S, blue line)
and the compensatory root water uptake (Scomp, red line) accounting for heterogeneous soil water potential
distribution. (a) S¢omp = 0 (N0 root compensation, i.e., soil water potential profile is homogeneous) leading to a situation
where S = S,g. (b) Scomp is (i) different than zero and (ii) becomes negative at the surface but remains smaller (in
absolute term) than S,,g. (€) Scomp is (i) different than zero and (ii) becomes negative at the surface while becomes
greater (in absolute term) than S,y at the surface (z > —0.08 m). In the last case, S is negative at the surface, meaning

0.0 0.5 1
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OI.O OI.5 1
e o |
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hydraulic redistribution — more specifically hydraulic lift — is observed.
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Figure 2

Figure 2: (a) Simulated soil water isotopic composition (Js) profiles under isothermal conditions for a water saturated
(black line) and unsaturated (gray line) soil following Zimmermann et al. (1967) and Barnes and Allison (1983).
Indices “surf” and “EF” refer to soil surface and Evaporation Front. “vapor” and “liquid” regions refer to soil
regions where water flow occurs predominantly in the liquid and vapor phase, respectively. (b) Illustration of the
“graphical inference” (GI) method for determining the “mean root water uptake depth” (7 ) as the soil depth where
Jds = or; with “Ti” standing for the sap xylem water at the plant tiller. Case 1 represents the condition for which a
unique solution is found and case 2 the condition with more than one solution due to a heterogeneous Js profile. In the
latter case, a possibility is to smooth the Js profile (using Eq. (5)) until it is monotonous (smoothed profile is
designated by the symbols). In this example, the Js profile is smoothed over three layers and a uniform soil water
content profile is implied. 7 range (gray horizontal stripes) is determined by taking into account the uncertainty
associated with measurement of Jr; (i.e., precision of the isotopic analysis; green vertical stripe).
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Figure 3: Standard error (o,) associated with the estimation of the relative contribution (x) of source A water to root
water uptake in case of two distinct sources (A and B of isotopic compositions J, and dg). Following Eqgs. (8a) and (8b)
(Phillips and Gregg, 2001), o, is a function of the difference (0,—Jp) (represented in absolute term in this Figure), of
the value of x (three values are tested here: 0.1, 1/3, and 1/2, corresponding to dark blue, light blue and orange lines),
and of the standard errors associated with sampling and measurement of J,, dg, and of the isotopic composition of the
tiller sap water (d;) (three values are tested, i.e., 0.02, 0.10, and 1.00, corresponding to solid and dashed lines).
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Figure 4: Simulated depth (z, in m) profiles of x,\ (%) (solid colored lines), the simulated ratio M
T I(Ax- Ay)

provided by the model of Couvreur et al. (2012) (Eq. (B4’), see Appendix B) on the basis of input data reported in
Table 2 for experiments “ShDr” (soil with shallow groundwater table and relatively dry soil surface), “ShWe” (soil
with shallow groundwater table after a rainfall event)”, “DeDr” (soil with deep groundwater table with relatively dry
soil surface), “DeWe” (soil with deep groundwater table after a rainfall event). Suffices “IT” and “hT” refer to “low”
and “high” transpiration rate simulations. Note that negative x,y; means hydraulic redistribution (HR) by the roots.
The color-shaded areas depict the results of 1000 model runs where for each input data variable (soil water potential,
6"80, and root length density — RLD) a single offset randomly selected between —5 and +5 cm, —0.2 and +0.2 %o, and —
0.1 and +0.1 cm cm™ respectively for each variable was added to the initial values reported in Table 2. This should
represent the uncertainty of the model estimates on the account of the precision of the measurements. The horizontal
gray-shaded areas delimit the soil layers that contribute to RWU as obtained by the “graphical inference” (GI)
method, i.e., by locating the depth of the intersection between a vertical line of value dy;_sv and the soil water isotopic
profile. Layers’ lower and upper boundaries are inferred from the uncertainty of the Jy; oy estimates for each
scenario (d1;_am is given above each plot along with its standard deviation). At the bottom right corner of each plot is
represented a detail for z > —0.10 m. Finally, results from the first term of the model of Couvreur et al. (2012) which
considers uptake proportional to RLD (S,,iz, Eq. (B4)) is plotted as a dashed brown line for comparison.
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Figure 5

B AM (Couvreur et al., 2012) (a) two conjoint soil layers
™

20 40 60 80 100

X (%) / layer 0-0.225 m

0

7

N

X (%) /layer 1.75-2.00 m
20 40 60 80

0

T hT IT hT T hT IT hT
ShDr ShWe DeDr DeWe

Figure 5: Comparison between relative contributions to transpiration (x, in %) from one soil layer simulated by the analytical
RWU model of Couvreur et al. (2012) and the two end-member mixing model (TM, see section §3.2.1) in case of two defined soil
layers. Figure 5a displays x from the topmost soil layer (0 — 0.225 m) in case of a two conjoint soi layers (0 — 0.225 m and 0.225 —
2.00 m) whereas Figure 5b displays x from the lowest soil layer (1.75 — 2.00 m) in case of a two disjoint soil layers (0 — 0.225 m and
0.225 — 2.00 m), i.e., information on soil water isotopic composition is lacking between 0.225 and 1.75 m. “Sh” (“De”) stands for the
virtual experiments where the soil has a shallow (deep) groundwater table while “Dr” and “We” stand for when the soil is dry or
wet at the surface (e.g., shortly after a rain event). Suffices “IT” and “hT” refer to “low” and “high” transpiration rate
simulations. “*” refers to when hydraulic redistribution is simulated by the analytical model, leading to a negative x. Error bars
refer to either one standard deviation (for the RWU analytical model) or one standard error (for the TM approach).
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Figure 6
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Figure 6: Simulated ranges of possible relative contributions to transpiration from three defined soil layers (I: 0.00 — 0.05 m, II:
0.050 — 0.225 m, and III: 0.225 - 2.000) following the method of Phillips and Gregg (2003) (xpspg, in %, displayed in the form of
gray histograms). Density distributions functions following the Bayesian approach of Parnell et al. (2010) (xyspa, gray lines). xyspg
and xy;sp, Were obtained from the confrontation of soil water P0) profiles (Table 1) and the J1; simulated by the model of
Couvreur et al. (2012) (i.e., o1; am, given above each plot along with its standard deviation). Tolerance of the MSPG was set equal
to the standard deviation of o1 oy “Sh” (“De”) stands for the virtual experiments where the soil has a shallow (deep)
groundwater table while “Dr” and “We” stand for when the soil is dry or wet at the surface (e.g., shortly after a rain event).
Suffices “IT” and “hT” refer to “low” and “high” transpiration rate simulations. The colored vertical lines give x| s, Xi_am, and

Xmi_am, the ratios M from layers L, II, and III to transpiration rate as simulated by the analytical model of Couvreur et
T I(Ax - Ay)

al. (2012). The color-shaded areas associated with xj sy, X am, and xyy_an vertical lines refer to their uncertainty associated with
input data uncertainty (i.e., 5 cm for soil water potential, 0.2 %o for soil water 6'°0, and +0.1 cm cm™ for root length density).
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APPENDIX

Appendix A: List of symbols

Zrwu

Jj, depth of the root system, “mean root water uptake depth”

Symbol Description Dimension Equation Measured (m) /
number simulated (s) /
prescribed (p)
C, Cs, Ca, G, Cri Water stable isotopic concentration, soil water stable isotopic ML?® 2, 3, 6a, 6b m
concentration, sources A and B water stable isotopic s
concentrations, xylem sap water isotopic concentration, root
water uptake isotopic concentration
E E Evaporation rate for 'H,'®0 isotopologue, Evaporation rate for LT B1-B4 m/s
11421416, 1 18, B
H*H™"O or 'H. "0 isotopologue
h Matric head L m
Heq, Hi, Hs Soil water equivalent and leaf water potentials, total soil water P m
potential
Ja, Jb, i Fluxes of water originating from water sources A and B, and at LT 6b m
the plan tiller
JA,JE and Ji Fluxes of isotopologues originating from water sources A and MT' 6a m
o ' B, and at the plan tiller
Kotant Keomp Plant and compensatory conductances to water flow Lp'T B1-B4 m/p
M, M Molar masses of water and isotopologue (‘H*H'®0 or 'H,'®0) ML*® 3 m
RLD Root length density LL® B3 m/p
RLDip Root length density per unit of surface area LL' m/p
Ries Vienna-Standard Mean Ocean Water (V-SMOW) hydrogen or 3 m
oxygen stable isotopic ratio
S, Sunits Scompy Sam | Root water uptake sink term, Root water uptake sink term LT 1-4, 6b, s
under uniform soil water potential distribution, compensatory B4,B5, 6b
root water uptake sink term, total root water uptake sink term
as simulated by the analytical model of Couvreur et al. (2012)
SSF Standard sink fraction - B2, B4, B4’ m/p
t, At Time, time step T 11 m
T Transpiration flux LT’ 2, 4a, 4b, B1, m
B3, B4
X, Xj Contributive proportion to transpiration, source j contributive - 7,8b,9,9 s
Xam, Xsam, Xsmspa, | proportion to transpiration, continuous and integrated (layer J)
Xy MSPa contributive proportions to transpiration as simulated by the
analytical model of Couvreur et al. (2012), integrated (layer J)
contributive proportions to transpiration as determined by the
statistical approaches of Phillips and Gregg (2003) and Parnell
et al. (2010). Contributive proportion to transpiration under
conditions of uniform soil water potential
z, Zj, Zi1, DZ;, Zmax, | Soil depth, soil depth of layers j and j+1, thickness of soil layer L 4b, 5, B2-B4’ m/p
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Olegs OK, Equilibrium and kinetic isotopic fractionation factors, hydrogen - m/s
M g0 oo o and oxygen equilibrium isotopic fractionation factors, hydrogen
eq *eq K YK H P B : :
and oxygen Kkinetic isotopic fractionation factors
5, 6°H, 5'°0, &, 6,, | Water stable isotopic composition, water hydrogen and oxygen - 3-5,7-9, 11 m/s
O.v, Osources Osurt, stable isotopic compositions, liquid, vapor, liquid-vapor | (expressed
Bsims Os, Osj O interface, source, soil surface, and simulated water isotopic in %o)
Oa, Os, Oriy Orim, compositions, soil water isotopic composition, soil layer j and J
S1i aw, OF, O7 water isotopic composition, sources A and B water stable
- isotopic compositions, isotopic composition of xylem sap water
at the plant tiller, isotopic composition of xylem sap water
measured at the plant tiller, isotopic composition of xylem sap
water at the plant tiller as simulated by the model of Couvreur
et al. (2012), isotopic composition of transpiration
& Residual error term - 9 s
(expressed
in %02
2] Soil volumetric water content oL 5, 11 m
o Volumetric mass of water ML?® 3 m
0,05 .05 .0 Sandard errors associated with the measurements of x, 4, g, - 8a, 8b s
oA B % | or and estimated uncertainty of Or aw as simulated by the | (expressed
Osnam?Fx analytical model of Couvreur et al. (2012), error associated in %o)
with the estimation of the contributive proportion to T of water
source A in the case of two distinct sources
r Isotopic tolerance - 10 p
(expressed
in %o)
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Appendix B: The macroscopic RWU model of Couvreur et al. (2012)
B1: Presentation of the model

In the approach of Couvreur et al. (2012), RWU is based on physical equations describing the water flow processes but
without the need of the full knowledge of the root system architecture and local hydraulic parameters. Instead, three

macroscopic parameters are needed. The first equation defines plant transpiration:

Jn=K '(Heq_HL) (B1)

plant
where J3; [L3 T''] is the sap flow rate in the root tiller and considered to be equal to the transpiration rate, Kpjan [L*P' T is
the plant conductance to water flow (the first macroscopic parameter of Couvreur et al., 2012's model). H;[P] is the leaf
water potential and Hq [P] the “plant averaged soil water potential” defined as the mean soil water potential “sensed” by the

plant root system in the one dimensional (vertical) space:
H,, = [SSF(2)-Hy(z) (B2)

where z is the soil depth, Hg [P] is the total soil water potential, and SSF [-] the standard sink term fraction (the second
macroscopic parameter of the model of Couvreur et al., 2012). SSF is defined as the RWU fraction under the condition of
totally uniform soil water potential (i.e., when Hg(x,y,z) = Hs = cst). Under such conditions, if all the root segments had the
same radial conductivity (and the xylem conductance would not be limiting), the RWU distribution in a uniform soil water
potential profile would be exactly the same as the root length density per unit of surface area (RLD;p of dimension [L L'])
profile. SSF' could be defined as:

Sunin(2)dz < RLD, (z)-dz (B3)

4w [RLD(2)-dz

SSF(z) =

where gt; = J1i/(Ax'Ay) represents the sap flow rate in the root tiller per unit surface area [L T'l], SuniH [T'l] is the RWU sink

term under uniform soil water potential profile. The RWU under conditions of heterogeneous soil water potential is

described with the following equation:

(H,(2)-H,,) SSF(2)
V(2)

where Keomp [L3 p’! T is the compensatory conductance and Scomp [L3 T'l] the compensatory RWU accounting for the non-

(B4)

S(Z) = SuniH (Z) + Scomp (Z) = qTi : SSF(Z) + Kcomp :

uniform distribution of the soil water potential and V(z) is the volume of soil considered. If the soil water potential is
uniform, this term vanishes from the equation, as Hs= H,, for any z, and water is extracted from the soil proportionally to
RLD. When the water potential at a certain location is smaller (more negative, which means drier) than H.y, less water is
extracted from this location. On the other hand, when the soil is wetter (Hg less negative), a larger amount of water can be

taken up from the same location as compared. Note that if Hg < H,, and if the compensatory term is higher than the first one,
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S can become positive, and water is released to the soil (i.e., hydraulic redistribution — HR occurs). From Eq. (B4), it can be
concluded that HR will preferably occur when ¢gr; is small and when large soil water potential gradients exist. Plant root
hydraulic characteristics will control compensation through the Ko, term. The importance of the compensatory RWU term
has been discussed in the literature for a long time (e.g., Jarvis, 1989). Except if plants activate specific mechanisms to avoid
it, compensation always takes place under natural conditions due to the spatially heterogeneous distribution of soil water
potential (Javaux et al., 2013).

A simplifying hypothesis that can be made (Couvreur et al., 2014; Couvreur et al., 2012) is to consider that K.y and Keomp
are equal, which substituted in Eq. (B4) leads to:

S(2) =SSF(2) K o - (H,(2) = H_ )/ V(2) (B4”)
Finally, the uptake of water stable isotopologues, i.¢., the “isotopic sink term” (S; [M T™']) is defined as:

S (2)=8(2)-C(2) (BS)

where C [M L] is the water isotopic concentration.

B2: Running the model for the inter-comparison

The root water uptake (Say) depth profiles and corresponding Jr;_aym were simulated using the model of Couvreur et al.
(2012) (Eq. (B4’)) for all eight scenarios. For this, Hs, ds, and RLD input data were interpolated at a 0.01 m vertical
resolution and the resistance of the xylem vessels was assumed to be neglible so that Hy; = Hy. A Kjj.y value of 2.47 10°n?!
was taken and was determined based on concomitant 7, H.q and H, data measured for Festuca arundinacea. dri_am Was then

S (2)dz
T /(Ax-Ay)

calculated from Eq. (4b) (section §2.3). From these simulations, the depth profiles of xay (%), the ratio at each

interpolated depth z was determined, and x; sy, the ratio M from each of the integrated soil layers J (J <Ill or J <
T (Ax-Ay)

VIII) were calculated. In order to account for uncertainty of the input data (i.e., total soil water potential and oxygen isotopic
composition Hg and Js, and root length density RLD), the model was run a 1000 times where a single offset randomly
selected between —5 and +5 cm, —0.2 and +0.2 %o, and 0.1 and +0.1 cm cm™ was added to the initial values (reported Table

2) of Hs, ds, and RLD, respectively. By doing this we obtained a posteriori distributions of Say and corresponding Jt;_am

standard deviations (O P );
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Appendix C: Inter-comparison methodology

The graphical inference method (GI), the two end-member mixing model (TM), and the statistical methods of Phillips and
Gregg (2003) (MSPG) and Parnell et al. (2010) (MSPa) were compared to each-other in the following manner for each of the

eight virtual experiments:

®

(ii)

(iii)

(iv)

v)
(vi)

Single (or multiple) mean RWU depth(s) (z) were graphically identified following the GI method as the depth(s) of

the intersection between a vertical line of value Jp; ay With the Js profile. The uncertainty of method GI was

determined on the basis of the dr;_an a posteriori distribution: by taking into account & S 2 results were translated

into “RWU layers”;

relative contribution of RWU to transpiration (xryv, %) to two defined soil layers (either conjoint: 0 — 0.225 m and
0.225 — 2.00 m or disjoint: 0 — 0.225 m and 1.75 — 2.00 m) were determined using the TM approach. For this,
representative values for the water oxygen isotopic compositions of these soil layers were computed using Eq. (5)
which uses soil volumetric water content (8, in m’ m'3) as input data. € distribution was obtained from Hg distribution
and the van Genuchten (1980) closed-form equation. Values for its different parameters, i.e., the soil residual and
saturated water contents (6., and 0,,), and the shape parameters related to air entry potential and pore-size distribution
(o and n) were equal to 0.040 and 0.372 m> m‘3, 0.003 cm", and 3.3, respectively;

Possible range of x; mspg, the relative contribution of RWU to transpiration for each of the integrated soil layers
following the MSPG method was computed based on smoothed Js; profile and dr; am by solving the following

equation:

zxLMSPG '55,1 < ‘5TLAM t t‘ (CDH
7

with 7=0, .

ds.; was computed similarly to for the TM method;
Density distribution of x; ysp,, the relative contribution of RWU to transpiration for each of the three (or eight) soil

layers following the MSPG method was determined based on smoothed Js ; profile and dr; sy data as well. To compare
with the MSPG method (i) the number of d; replicates was fixed to three and equal to o am — O S’ ori_am, and
otiam+ O Sant an” and (ii) x; msp, Was computed at a 10 % increment (i);

Results obtained at steps (i)-(iv) were compared to each other;
Sensitivity of the MSPG method to the values of i and 7, and of the MSPa method to number of Jt; replicates, and to

values of arguments iterations and burnin were finally briefly tested.
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