000820789 001__ 820789 000820789 005__ 20210129224612.0 000820789 0247_ $$2doi$$a10.1002/2015WR018150 000820789 0247_ $$2ISSN$$a0043-1397 000820789 0247_ $$2ISSN$$a0148-0227 000820789 0247_ $$2ISSN$$a1944-7973 000820789 0247_ $$2WOS$$aWOS:000373117800016 000820789 0247_ $$2Handle$$a2128/17068 000820789 037__ $$aFZJ-2016-06056 000820789 082__ $$a550 000820789 1001_ $$0P:(DE-HGF)0$$aSchwartz, N.$$b0$$eCorresponding author 000820789 245__ $$aThe impact of mucilage on root water uptake-A numerical study 000820789 260__ $$a[New York]$$bWiley$$c2016 000820789 3367_ $$2DRIVER$$aarticle 000820789 3367_ $$2DataCite$$aOutput Types/Journal article 000820789 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1478875185_32296 000820789 3367_ $$2BibTeX$$aARTICLE 000820789 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000820789 3367_ $$00$$2EndNote$$aJournal Article 000820789 520__ $$aThe flow of water between soil and plants follows the gradient in water potential and depends on the hydraulic properties of the soil and the root. In models for root water uptake (RWU), it is usually assumed that the hydraulic properties near the plant root (i.e., in the rhizosphere) and in the bulk soil are identical. Yet a growing body of evidence has shown that the hydraulic properties of the rhizosphere are affected by root exudates (specifically, mucilage) and markedly differ from those of the bulk soil. In this work, we couple a 3-D detailed description of RWU with a model that accounts for the rhizosphere-specific properties (i.e., rhizosphere hydraulic properties and a nonequilibrium relation between water content and matric head). We show that as the soil dries out (due to water uptake), the higher water holding capacity of the rhizosphere results in a delay of the stress onset. During rewetting, nonequilibrium results in a slower increase of the rhizosphere water content. Furthermore, the inverse relation between water content and relaxation time implies that the drier is the rhizosphere the longer it takes to rewet. Another outcome of nonequilibrium is the small fluctuation of the rhizosphere water content compared to the bulk soil. Overall, our numerical results are in agreement with recent experimental data and provide a tool to further examine the impact of various rhizosphere processes on RWU and water dynamics. 000820789 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0 000820789 588__ $$aDataset connected to CrossRef 000820789 7001_ $$0P:(DE-HGF)0$$aCarminati, A.$$b1 000820789 7001_ $$0P:(DE-Juel1)129477$$aJavaux, M.$$b2 000820789 773__ $$0PERI:(DE-600)2029553-4$$a10.1002/2015WR018150$$gVol. 52, no. 1, p. 264 - 277$$n1$$p264 - 277$$tWater resources research$$v52$$x0043-1397$$y2016 000820789 8564_ $$uhttps://juser.fz-juelich.de/record/820789/files/Schwartz_et_al-2016-Water_Resources_Research.pdf$$yOpenAccess 000820789 8564_ $$uhttps://juser.fz-juelich.de/record/820789/files/Schwartz_et_al-2016-Water_Resources_Research.gif?subformat=icon$$xicon$$yOpenAccess 000820789 8564_ $$uhttps://juser.fz-juelich.de/record/820789/files/Schwartz_et_al-2016-Water_Resources_Research.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000820789 8564_ $$uhttps://juser.fz-juelich.de/record/820789/files/Schwartz_et_al-2016-Water_Resources_Research.jpg?subformat=icon-700$$xicon-700$$yOpenAccess 000820789 8564_ $$uhttps://juser.fz-juelich.de/record/820789/files/Schwartz_et_al-2016-Water_Resources_Research.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000820789 909CO $$ooai:juser.fz-juelich.de:820789$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire 000820789 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000820789 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000820789 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bWATER RESOUR RES : 2015 000820789 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000820789 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000820789 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000820789 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000820789 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000820789 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences 000820789 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000820789 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000820789 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000820789 9141_ $$y2016 000820789 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129477$$aForschungszentrum Jülich$$b2$$kFZJ 000820789 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0 000820789 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0 000820789 980__ $$ajournal 000820789 980__ $$aVDB 000820789 980__ $$aUNRESTRICTED 000820789 980__ $$aI:(DE-Juel1)IBG-3-20101118 000820789 9801_ $$aFullTexts