000820789 001__ 820789
000820789 005__ 20210129224612.0
000820789 0247_ $$2doi$$a10.1002/2015WR018150
000820789 0247_ $$2ISSN$$a0043-1397
000820789 0247_ $$2ISSN$$a0148-0227
000820789 0247_ $$2ISSN$$a1944-7973
000820789 0247_ $$2WOS$$aWOS:000373117800016
000820789 0247_ $$2Handle$$a2128/17068
000820789 037__ $$aFZJ-2016-06056
000820789 082__ $$a550
000820789 1001_ $$0P:(DE-HGF)0$$aSchwartz, N.$$b0$$eCorresponding author
000820789 245__ $$aThe impact of mucilage on root water uptake-A numerical study
000820789 260__ $$a[New York]$$bWiley$$c2016
000820789 3367_ $$2DRIVER$$aarticle
000820789 3367_ $$2DataCite$$aOutput Types/Journal article
000820789 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1478875185_32296
000820789 3367_ $$2BibTeX$$aARTICLE
000820789 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000820789 3367_ $$00$$2EndNote$$aJournal Article
000820789 520__ $$aThe flow of water between soil and plants follows the gradient in water potential and depends on the hydraulic properties of the soil and the root. In models for root water uptake (RWU), it is usually assumed that the hydraulic properties near the plant root (i.e., in the rhizosphere) and in the bulk soil are identical. Yet a growing body of evidence has shown that the hydraulic properties of the rhizosphere are affected by root exudates (specifically, mucilage) and markedly differ from those of the bulk soil. In this work, we couple a 3-D detailed description of RWU with a model that accounts for the rhizosphere-specific properties (i.e., rhizosphere hydraulic properties and a nonequilibrium relation between water content and matric head). We show that as the soil dries out (due to water uptake), the higher water holding capacity of the rhizosphere results in a delay of the stress onset. During rewetting, nonequilibrium results in a slower increase of the rhizosphere water content. Furthermore, the inverse relation between water content and relaxation time implies that the drier is the rhizosphere the longer it takes to rewet. Another outcome of nonequilibrium is the small fluctuation of the rhizosphere water content compared to the bulk soil. Overall, our numerical results are in agreement with recent experimental data and provide a tool to further examine the impact of various rhizosphere processes on RWU and water dynamics.
000820789 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000820789 588__ $$aDataset connected to CrossRef
000820789 7001_ $$0P:(DE-HGF)0$$aCarminati, A.$$b1
000820789 7001_ $$0P:(DE-Juel1)129477$$aJavaux, M.$$b2
000820789 773__ $$0PERI:(DE-600)2029553-4$$a10.1002/2015WR018150$$gVol. 52, no. 1, p. 264 - 277$$n1$$p264 - 277$$tWater resources research$$v52$$x0043-1397$$y2016
000820789 8564_ $$uhttps://juser.fz-juelich.de/record/820789/files/Schwartz_et_al-2016-Water_Resources_Research.pdf$$yOpenAccess
000820789 8564_ $$uhttps://juser.fz-juelich.de/record/820789/files/Schwartz_et_al-2016-Water_Resources_Research.gif?subformat=icon$$xicon$$yOpenAccess
000820789 8564_ $$uhttps://juser.fz-juelich.de/record/820789/files/Schwartz_et_al-2016-Water_Resources_Research.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000820789 8564_ $$uhttps://juser.fz-juelich.de/record/820789/files/Schwartz_et_al-2016-Water_Resources_Research.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000820789 8564_ $$uhttps://juser.fz-juelich.de/record/820789/files/Schwartz_et_al-2016-Water_Resources_Research.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000820789 909CO $$ooai:juser.fz-juelich.de:820789$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000820789 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000820789 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000820789 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bWATER RESOUR RES : 2015
000820789 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000820789 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000820789 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000820789 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000820789 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000820789 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000820789 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000820789 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000820789 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000820789 9141_ $$y2016
000820789 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129477$$aForschungszentrum Jülich$$b2$$kFZJ
000820789 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000820789 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000820789 980__ $$ajournal
000820789 980__ $$aVDB
000820789 980__ $$aUNRESTRICTED
000820789 980__ $$aI:(DE-Juel1)IBG-3-20101118
000820789 9801_ $$aFullTexts