000820811 001__ 820811
000820811 005__ 20240711101535.0
000820811 0247_ $$2doi$$a10.3390/en10040451
000820811 0247_ $$2Handle$$a2128/14158
000820811 0247_ $$2WOS$$aWOS:000400065000040
000820811 0247_ $$2altmetric$$aaltmetric:18571231
000820811 037__ $$aFZJ-2016-06078
000820811 082__ $$a620
000820811 1001_ $$0P:(DE-Juel1)144929$$aOtto, Alexander$$b0
000820811 245__ $$aPower-to-Steel: Reducing CO2 through the integration of renewable energy into the German steel industry
000820811 260__ $$aBasel$$bMDPI$$c2017
000820811 3367_ $$2DRIVER$$aarticle
000820811 3367_ $$2DataCite$$aOutput Types/Journal article
000820811 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1491802285_30240
000820811 3367_ $$2BibTeX$$aARTICLE
000820811 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000820811 3367_ $$00$$2EndNote$$aJournal Article
000820811 520__ $$aThis paper analyses some possible means by which renewable power could be integrated into the steel manufacturing process, with techniques such as blast furnace gas recirculation (BF-GR), furnaces that utilize carbon capture, a higher share of electrical arc furnaces (EAFs) and the use of direct reduced iron with hydrogen as reduction agent (H-DR). It is demonstrated that these processes could lead to less dependence on—and ultimately complete independence from—coal. This opens the possibility of providing the steel industry with power and heat by coupling to renewable power generation (sector coupling). In this context, it is shown using the example of Germany that with these technologies, reductions of 47–95% of CO2 emissions against 1990 levels and 27–95% of primary energy demand against 2008 can be achieved through the integration of 12–274 TWh of renewable electrical power into the steel industry. Thereby, a substantial contribution to reducing CO2 emissions and fuel demand could be made (although it would fall short of realizing the German government’s target of a 50% reduction in power consumption by 2050)
000820811 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000820811 588__ $$aDataset connected to CrossRef
000820811 7001_ $$0P:(DE-Juel1)156460$$aRobinius, Martin$$b1$$eCorresponding author
000820811 7001_ $$0P:(DE-Juel1)129852$$aGrube, Thomas$$b2
000820811 7001_ $$0P:(DE-Juel1)140120$$aSchiebahn, Sebastian$$b3
000820811 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b4
000820811 7001_ $$0P:(DE-HGF)0$$aPraktiknjo, Aaron$$b5
000820811 773__ $$0PERI:(DE-600)2437446-5$$a10.3390/en10040451$$gVol. 10, no. 4, p. 451 -$$n4$$p451 $$tEnergies$$v10$$x1996-1073$$y2017
000820811 8564_ $$uhttps://juser.fz-juelich.de/record/820811/files/energies-10-00451.pdf$$yOpenAccess
000820811 8564_ $$uhttps://juser.fz-juelich.de/record/820811/files/energies-10-00451.gif?subformat=icon$$xicon$$yOpenAccess
000820811 8564_ $$uhttps://juser.fz-juelich.de/record/820811/files/energies-10-00451.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000820811 8564_ $$uhttps://juser.fz-juelich.de/record/820811/files/energies-10-00451.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000820811 8564_ $$uhttps://juser.fz-juelich.de/record/820811/files/energies-10-00451.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000820811 8564_ $$uhttps://juser.fz-juelich.de/record/820811/files/energies-10-00451.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000820811 8767_ $$8energies-181278$$92017-03-17$$d2017-03-17$$eAPC$$jZahlung erfolgt$$penergies-181278$$zCHF 1275,-
000820811 909CO $$ooai:juser.fz-juelich.de:820811$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000820811 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144929$$aForschungszentrum Jülich$$b0$$kFZJ
000820811 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156460$$aForschungszentrum Jülich$$b1$$kFZJ
000820811 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129852$$aForschungszentrum Jülich$$b2$$kFZJ
000820811 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140120$$aForschungszentrum Jülich$$b3$$kFZJ
000820811 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b4$$kFZJ
000820811 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000820811 9141_ $$y2017
000820811 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000820811 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000820811 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000820811 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000820811 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGIES : 2015
000820811 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000820811 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000820811 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000820811 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000820811 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000820811 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000820811 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000820811 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000820811 920__ $$lyes
000820811 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000820811 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000820811 9801_ $$aFullTexts
000820811 980__ $$ajournal
000820811 980__ $$aVDB
000820811 980__ $$aUNRESTRICTED
000820811 980__ $$aI:(DE-Juel1)IEK-3-20101013
000820811 980__ $$aI:(DE-82)080011_20140620
000820811 980__ $$aAPC
000820811 981__ $$aI:(DE-Juel1)ICE-2-20101013