Home > Publications database > Power-to-Steel: Reducing CO2 through the integration of renewable energy into the German steel industry > print |
001 | 820811 | ||
005 | 20240711101535.0 | ||
024 | 7 | _ | |a 10.3390/en10040451 |2 doi |
024 | 7 | _ | |a 2128/14158 |2 Handle |
024 | 7 | _ | |a WOS:000400065000040 |2 WOS |
024 | 7 | _ | |a altmetric:18571231 |2 altmetric |
037 | _ | _ | |a FZJ-2016-06078 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Otto, Alexander |0 P:(DE-Juel1)144929 |b 0 |
245 | _ | _ | |a Power-to-Steel: Reducing CO2 through the integration of renewable energy into the German steel industry |
260 | _ | _ | |a Basel |c 2017 |b MDPI |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1491802285_30240 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a This paper analyses some possible means by which renewable power could be integrated into the steel manufacturing process, with techniques such as blast furnace gas recirculation (BF-GR), furnaces that utilize carbon capture, a higher share of electrical arc furnaces (EAFs) and the use of direct reduced iron with hydrogen as reduction agent (H-DR). It is demonstrated that these processes could lead to less dependence on—and ultimately complete independence from—coal. This opens the possibility of providing the steel industry with power and heat by coupling to renewable power generation (sector coupling). In this context, it is shown using the example of Germany that with these technologies, reductions of 47–95% of CO2 emissions against 1990 levels and 27–95% of primary energy demand against 2008 can be achieved through the integration of 12–274 TWh of renewable electrical power into the steel industry. Thereby, a substantial contribution to reducing CO2 emissions and fuel demand could be made (although it would fall short of realizing the German government’s target of a 50% reduction in power consumption by 2050) |
536 | _ | _ | |a 134 - Electrolysis and Hydrogen (POF3-134) |0 G:(DE-HGF)POF3-134 |c POF3-134 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Robinius, Martin |0 P:(DE-Juel1)156460 |b 1 |e Corresponding author |
700 | 1 | _ | |a Grube, Thomas |0 P:(DE-Juel1)129852 |b 2 |
700 | 1 | _ | |a Schiebahn, Sebastian |0 P:(DE-Juel1)140120 |b 3 |
700 | 1 | _ | |a Stolten, Detlef |0 P:(DE-Juel1)129928 |b 4 |
700 | 1 | _ | |a Praktiknjo, Aaron |0 P:(DE-HGF)0 |b 5 |
773 | _ | _ | |a 10.3390/en10040451 |g Vol. 10, no. 4, p. 451 - |0 PERI:(DE-600)2437446-5 |n 4 |p 451 |t Energies |v 10 |y 2017 |x 1996-1073 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/820811/files/energies-10-00451.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/820811/files/energies-10-00451.gif?subformat=icon |x icon |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/820811/files/energies-10-00451.jpg?subformat=icon-1440 |x icon-1440 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/820811/files/energies-10-00451.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/820811/files/energies-10-00451.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/820811/files/energies-10-00451.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:820811 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)144929 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)156460 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)129852 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)140120 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)129928 |
913 | 1 | _ | |a DE-HGF |l Speicher und vernetzte Infrastrukturen |1 G:(DE-HGF)POF3-130 |0 G:(DE-HGF)POF3-134 |2 G:(DE-HGF)POF3-100 |v Electrolysis and Hydrogen |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ENERGIES : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-3-20101013 |k IEK-3 |l Elektrochemische Verfahrenstechnik |x 0 |
920 | 1 | _ | |0 I:(DE-82)080011_20140620 |k JARA-ENERGY |l JARA-ENERGY |x 1 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-3-20101013 |
980 | _ | _ | |a I:(DE-82)080011_20140620 |
980 | _ | _ | |a APC |
981 | _ | _ | |a I:(DE-Juel1)ICE-2-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|