000820820 001__ 820820
000820820 005__ 20210129224618.0
000820820 0247_ $$2doi$$a10.3997/1873-0604.2016033
000820820 0247_ $$2WOS$$aWOS:000386318500006
000820820 037__ $$aFZJ-2016-06087
000820820 082__ $$a550
000820820 1001_ $$0P:(DE-HGF)0$$aInzoli, S.$$b0$$eCorresponding author
000820820 245__ $$aEstimation of sediment texture from spectral induced polarisation data using cluster and principal component analysis
000820820 260__ $$aHouten$$bEAGE$$c2016
000820820 3367_ $$2DRIVER$$aarticle
000820820 3367_ $$2DataCite$$aOutput Types/Journal article
000820820 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1480002083_20022
000820820 3367_ $$2BibTeX$$aARTICLE
000820820 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000820820 3367_ $$00$$2EndNote$$aJournal Article
000820820 520__ $$aSpectral induced polarisation data are usually interpreted with simple models in order to derive petrophysical relationships between electrical and sedimentological properties, such as texture, clay content, and permeability. The aim of this work is to explore the value of spectral induced polarisation in addition to conventional direct-current resistivity measurements for determining textural properties of saturated samples collected from alluvial deposits. For this, an advanced data processing approach that combines cluster and principal component analysis was developed and applied to integral parameters derived from Debye decomposition of spectral induced polarisation data. This data processing procedure allowed identifying groups of samples with a similar spectral induced polarisation response and to derive a characteristic grain-size distribution for each group of samples.The method to estimate the grain-size distribution from spectral induced polarisation data was successfully validated using independent sediment samples. The remaining uncertainty in the estimation of sediment texture from spectral induced polarisation data was attributed to the effect of pore size distribution and mineralogy, which were not considered in the present work but can be added in the future within the same conceptual workflow.
000820820 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000820820 7001_ $$0P:(DE-HGF)0$$aGiudici, M.$$b1
000820820 7001_ $$0P:(DE-Juel1)129472$$aHuisman, Johan Alexander$$b2$$ufzj
000820820 773__ $$0PERI:(DE-600)2247665-9$$a10.3997/1873-0604.2016033$$n5$$p433-447$$tNear surface geophysics$$v14$$x1569-4445$$y2016
000820820 909CO $$ooai:juser.fz-juelich.de:820820$$pVDB:Earth_Environment$$pVDB
000820820 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129472$$aForschungszentrum Jülich$$b2$$kFZJ
000820820 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000820820 9141_ $$y2016
000820820 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000820820 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEAR SURF GEOPHYS : 2015
000820820 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000820820 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000820820 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000820820 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000820820 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000820820 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000820820 920__ $$lyes
000820820 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000820820 980__ $$ajournal
000820820 980__ $$aVDB
000820820 980__ $$aI:(DE-Juel1)IBG-3-20101118
000820820 980__ $$aUNRESTRICTED