000820826 001__ 820826
000820826 005__ 20230515091804.0
000820826 0247_ $$2doi$$a10.1007/s13369-016-2316-y
000820826 0247_ $$2ISSN$$a1319-8025
000820826 0247_ $$2ISSN$$a2191-4281
000820826 0247_ $$2Handle$$a2128/14593
000820826 0247_ $$2WOS$$aWOS:000395435400014
000820826 037__ $$aFZJ-2016-06093
000820826 082__ $$a600
000820826 1001_ $$0P:(DE-HGF)0$$aKilic, S. A.$$b0$$eCorresponding author
000820826 245__ $$aFE Model of the Fatih Sultan Mehmet Suspension Bridge Using Thin Shell Finite Elements
000820826 260__ $$aBerlin Heidelberg$$bSpringer$$c2017
000820826 3367_ $$2DRIVER$$aarticle
000820826 3367_ $$2DataCite$$aOutput Types/Journal article
000820826 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1496324477_18663
000820826 3367_ $$2BibTeX$$aARTICLE
000820826 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000820826 3367_ $$00$$2EndNote$$aJournal Article
000820826 520__ $$aThis paper presents the results of an eigenvalue analysis of the Fatih Sultan Mehmet Bridge. A high-resolution finite element model was created directly from the available design documents. All physical properties of the structural components were included in detail, so no calibration to the measured data was necessary. The deck and towers were modeled with shell elements. A nonlinear static analysis was performed before the eigenvalue calculation. The calculated natural frequencies and corresponding mode shapes showed good agreement with the available measured ambient vibration data. The calculation of the effective modal mass showed that nine modes had single contributions higher than 5% of the total mass. They were in a frequency range up to 1.2Hz. The comparison of the results for the torsional modes especially demonstrated the advantage of using thin shell finite elements over the beam modeling approach.
000820826 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000820826 542__ $$2Crossref$$i2016-10-01$$uhttp://creativecommons.org/licenses/by/4.0
000820826 588__ $$aDataset connected to CrossRef
000820826 7001_ $$0P:(DE-HGF)0$$aRaatschen, H. J.$$b1
000820826 7001_ $$0P:(DE-Juel1)132176$$aKörfgen, B.$$b2
000820826 7001_ $$0P:(DE-HGF)0$$aApaydin, N. M.$$b3
000820826 7001_ $$0P:(DE-HGF)0$$aAstaneh-Asl, A.$$b4
000820826 77318 $$2Crossref$$3journal-article$$a10.1007/s13369-016-2316-y$$bSpringer Science and Business Media LLC$$d2016-10-01$$n3$$p1103-1116$$tArabian Journal for Science and Engineering$$v42$$x2193-567X$$y2016
000820826 773__ $$0PERI:(DE-600)2471504-9$$a10.1007/s13369-016-2316-y$$n3$$p1103-1116$$tThe Arabian journal for science and engineering$$v42$$x2193-567X$$y2016
000820826 8564_ $$uhttps://juser.fz-juelich.de/record/820826/files/art10.1007s13369-016-2316-y.pdf$$yOpenAccess
000820826 8564_ $$uhttps://juser.fz-juelich.de/record/820826/files/art10.1007s13369-016-2316-y.gif?subformat=icon$$xicon$$yOpenAccess
000820826 8564_ $$uhttps://juser.fz-juelich.de/record/820826/files/art10.1007s13369-016-2316-y.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000820826 8564_ $$uhttps://juser.fz-juelich.de/record/820826/files/art10.1007s13369-016-2316-y.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000820826 8564_ $$uhttps://juser.fz-juelich.de/record/820826/files/art10.1007s13369-016-2316-y.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000820826 8564_ $$uhttps://juser.fz-juelich.de/record/820826/files/art10.1007s13369-016-2316-y.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000820826 909CO $$ooai:juser.fz-juelich.de:820826$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000820826 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132176$$aForschungszentrum Jülich$$b2$$kFZJ
000820826 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000820826 9141_ $$y2017
000820826 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000820826 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000820826 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000820826 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000820826 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000820826 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000820826 980__ $$ajournal
000820826 980__ $$aVDB
000820826 980__ $$aUNRESTRICTED
000820826 980__ $$aI:(DE-Juel1)JSC-20090406
000820826 9801_ $$aFullTexts
000820826 999C5 $$1JMW Brownjohn$$2Crossref$$9-- missing cx lookup --$$a10.1002/eqe.4290211005$$p907 -$$tEarthq. Eng. Struct. D.$$uBrownjohn, J.M.W.; Dumanoglu, A.A.; Severn, R.T.: Ambient vibration survey of the Fatih Sultan Mehmet (Second Bosporus) suspension bridge. Earthq. Eng. Struct. D. 21, 907–24 (1992)$$v21$$y1992
000820826 999C5 $$2Crossref$$uBrownjohn, J.M.W.; Severn, R.T.; Dumanoglu, A.A.: Full-scale dynamic testing of the 2nd Bosporus suspension bridge. In: Proceedings of the Tenth World Conference on Earthquake Engineering, Madrid, Spain, pp. 2695–700 (1992)
000820826 999C5 $$1AA Dumanoglu$$2Crossref$$9-- missing cx lookup --$$a10.1002/eqe.4290211004$$p881 -$$tEarthq. Eng. Struct. D.$$uDumanoglu, A.A.; Brownjohn, J.M.W.; Severn, R.T.: Seismic analysis of the Fatih Sultan Mehmet (2nd Bosporus) suspension bridge. Earthq. Eng. Struct. D. 21, 881–906 (1992)$$v21$$y1992
000820826 999C5 $$1AM Abdel-Ghaffar$$2Crossref$$uAbdel-Ghaffar, A.M.; Stringfellow, R.G.: Response of suspension bridges to travelling earthquake excitations: part II. Lateral response. Soil Dyn. Earthq. Eng. 3, 73–81 (1984)$$y1984
000820826 999C5 $$2Crossref$$uApaydin, N.M.: Seismic analysis of Fatih Sultan Mehmet Suspension Bridge. Ph.D. thesis, Department of Earthquake Engneering, Bogazici University, Istanbul, Turkey (2002)
000820826 999C5 $$1NM Apaydin$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.soildyn.2010.02.011$$p702 -$$tSoil Dyn. Earthq. Eng.$$uApaydin, N.M.: Earthquake performance assessment and retrofit investigations of two suspension bridges in Istanbul. Soil Dyn. Earthq. Eng. 30, 702–10 (2010)$$v30$$y2010
000820826 999C5 $$1WE Daniell$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.engstruct.2006.05.003$$p358 -$$tEng. Struct.$$uDaniell, W.E.; Macdonald, J.H.G.: Improved finite element modelling of a cable-stayed bridge through systematic manual tuning. Eng. Struct. 29, 358–71 (2007)$$v29$$y2007
000820826 999C5 $$2Crossref$$uZhang, J.; Prader, J.; Moon, F.; Aktan, E.; Wu, Z.S.: Challenges and strategies in structural identification of a long span suspension bridge. In: 6th International Workshop on Advanced Smart Materials and Smart Structures Technology (ANCRiSST), Dalian, pp 1–12 (2011)
000820826 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1201/b12352-555$$uRahbari, A.R.; Brownjohn, J.M.W.: Finite element modelling of Humber Bridge. In: 6th International Conference on Bridge Maintenance, Safety and Management (IABMAS), Stresa, pp. 3709–16 (2012)
000820826 999C5 $$1D Karmakar$$2Crossref$$9-- missing cx lookup --$$a10.1080/15732479.2013.863360$$p223 -$$tStruct. Infrastruct. E.$$uKarmakar, D.; Ray-Chaudhuri, S.; Shinozuka, M.: Finite element model development, validation and probabilistic seismic performance evaluation of Vincent Thomas suspension bridge. Struct. Infrastruct. E. 11(2), 223–237 (2015)$$v11$$y2015
000820826 999C5 $$1YF Duan$$2Crossref$$9-- missing cx lookup --$$a10.1142/S0219455411004117$$p313 -$$tInt. J. Struct. Stab. Dyn.$$uDuan, Y.F.; Xu, Y.L.; Fei, Q.G.; Wong, K.Y.; Chan, K.W.Y.; Ni, Y.Q.; Ng, C.L.: Advanced finite element model of Tsing Ma Bridge for structural health monitoring. Int. J. Struct. Stab. Dyn. 11, 313–344 (2011)$$v11$$y2011
000820826 999C5 $$1JO Hallquist$$2Crossref$$tLS-DYNA Theory Manual$$uHallquist, J.O.: LS-DYNA Theory Manual. LSTC (Livermore Software Technology Corporation), Livermore, California (2006)$$y2006
000820826 999C5 $$2Crossref$$uIHI, MHI, NKK Corp.: Record Book for the Fatih Sultan Mehmet Suspension Bridge. Tokyo (1989)
000820826 999C5 $$2Crossref$$uIngenlath, P.: Seismic Finite Element Analysis of the Second Bosporus Bridge. Bachelor Engineering thesis, Department of Mechanical Engineering, Aachen University of Applied Sciences, Aachen (2010)
000820826 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0045-7825(84)90026-4$$uBelytschko, T.B.; Tsay, C.S.: Explicit algorithms for the nonlinear dynamics of shells. Comput. Method. Appl. Mech. Eng. 42, 225–251 (1984)
000820826 999C5 $$1TJR Hughes$$2Crossref$$9-- missing cx lookup --$$a10.1016/0045-7825(81)90121-3$$p331 -$$tComput. Method. Appl. Mech. Eng.$$uHughes, T.J.R.; Liu, W.K.: Nonlinear finite element analysis of shells: part I. Three-dimensional shells. Comput. Method. Appl. Mech. Eng. 26, 331–362 (1981)$$v26$$y1981
000820826 999C5 $$1TJR Hughes$$2Crossref$$9-- missing cx lookup --$$a10.1016/0045-7825(81)90148-1$$p167 -$$tComput. Method. Appl. Mech. Eng.$$uHughes, T.J.R.; Liu, W.K.: Nonlinear finite element analysis of shells: part II. Two-dimensional shells. Comput. Method. Appl. Mech. Eng. 27, 167–181 (1981)$$v27$$y1981
000820826 999C5 $$1R Grimes$$2Crossref$$9-- missing cx lookup --$$a10.1137/S0895479888151111$$p228 -$$tSIAM J. Matrix Anal. Appl.$$uGrimes, R.; Lewis, J.; Simon, H.: A shifted block Lanczos algorithm for solving sparse symmetric generalized eigenproblems. SIAM J. Matrix Anal. Appl. 15, 228–272 (1994)$$v15$$y1994
000820826 999C5 $$2Crossref$$uThe Boeing Company: Boeing Extreme Mathematical Library (BCSLIB-EXT) User’s Guide. Seattle, Washington (2000)
000820826 999C5 $$1RP Feynman$$2Crossref$$tThe Feynman Lectures on Physics$$uFeynman, R.P.; Sands, M.; Leighton, R.: The Feynman Lectures on Physics. Addison Wesley, Boston (2006)$$y2006