001     820826
005     20230515091804.0
024 7 _ |a 10.1007/s13369-016-2316-y
|2 doi
024 7 _ |a 1319-8025
|2 ISSN
024 7 _ |a 2191-4281
|2 ISSN
024 7 _ |a 2128/14593
|2 Handle
024 7 _ |a WOS:000395435400014
|2 WOS
037 _ _ |a FZJ-2016-06093
082 _ _ |a 600
100 1 _ |a Kilic, S. A.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a FE Model of the Fatih Sultan Mehmet Suspension Bridge Using Thin Shell Finite Elements
260 _ _ |a Berlin Heidelberg
|c 2017
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1496324477_18663
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This paper presents the results of an eigenvalue analysis of the Fatih Sultan Mehmet Bridge. A high-resolution finite element model was created directly from the available design documents. All physical properties of the structural components were included in detail, so no calibration to the measured data was necessary. The deck and towers were modeled with shell elements. A nonlinear static analysis was performed before the eigenvalue calculation. The calculated natural frequencies and corresponding mode shapes showed good agreement with the available measured ambient vibration data. The calculation of the effective modal mass showed that nine modes had single contributions higher than 5% of the total mass. They were in a frequency range up to 1.2Hz. The comparison of the results for the torsional modes especially demonstrated the advantage of using thin shell finite elements over the beam modeling approach.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
542 _ _ |i 2016-10-01
|2 Crossref
|u http://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Raatschen, H. J.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Körfgen, B.
|0 P:(DE-Juel1)132176
|b 2
700 1 _ |a Apaydin, N. M.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Astaneh-Asl, A.
|0 P:(DE-HGF)0
|b 4
773 1 8 |a 10.1007/s13369-016-2316-y
|b Springer Science and Business Media LLC
|d 2016-10-01
|n 3
|p 1103-1116
|3 journal-article
|2 Crossref
|t Arabian Journal for Science and Engineering
|v 42
|y 2016
|x 2193-567X
773 _ _ |a 10.1007/s13369-016-2316-y
|0 PERI:(DE-600)2471504-9
|n 3
|p 1103-1116
|t The Arabian journal for science and engineering
|v 42
|y 2016
|x 2193-567X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/820826/files/art10.1007s13369-016-2316-y.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/820826/files/art10.1007s13369-016-2316-y.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/820826/files/art10.1007s13369-016-2316-y.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/820826/files/art10.1007s13369-016-2316-y.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/820826/files/art10.1007s13369-016-2316-y.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/820826/files/art10.1007s13369-016-2316-y.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:820826
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132176
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts
999 C 5 |a 10.1002/eqe.4290211005
|9 -- missing cx lookup --
|1 JMW Brownjohn
|p 907 -
|2 Crossref
|u Brownjohn, J.M.W.; Dumanoglu, A.A.; Severn, R.T.: Ambient vibration survey of the Fatih Sultan Mehmet (Second Bosporus) suspension bridge. Earthq. Eng. Struct. D. 21, 907–24 (1992)
|t Earthq. Eng. Struct. D.
|v 21
|y 1992
999 C 5 |2 Crossref
|u Brownjohn, J.M.W.; Severn, R.T.; Dumanoglu, A.A.: Full-scale dynamic testing of the 2nd Bosporus suspension bridge. In: Proceedings of the Tenth World Conference on Earthquake Engineering, Madrid, Spain, pp. 2695–700 (1992)
999 C 5 |a 10.1002/eqe.4290211004
|9 -- missing cx lookup --
|1 AA Dumanoglu
|p 881 -
|2 Crossref
|u Dumanoglu, A.A.; Brownjohn, J.M.W.; Severn, R.T.: Seismic analysis of the Fatih Sultan Mehmet (2nd Bosporus) suspension bridge. Earthq. Eng. Struct. D. 21, 881–906 (1992)
|t Earthq. Eng. Struct. D.
|v 21
|y 1992
999 C 5 |1 AM Abdel-Ghaffar
|y 1984
|2 Crossref
|u Abdel-Ghaffar, A.M.; Stringfellow, R.G.: Response of suspension bridges to travelling earthquake excitations: part II. Lateral response. Soil Dyn. Earthq. Eng. 3, 73–81 (1984)
999 C 5 |2 Crossref
|u Apaydin, N.M.: Seismic analysis of Fatih Sultan Mehmet Suspension Bridge. Ph.D. thesis, Department of Earthquake Engneering, Bogazici University, Istanbul, Turkey (2002)
999 C 5 |a 10.1016/j.soildyn.2010.02.011
|9 -- missing cx lookup --
|1 NM Apaydin
|p 702 -
|2 Crossref
|u Apaydin, N.M.: Earthquake performance assessment and retrofit investigations of two suspension bridges in Istanbul. Soil Dyn. Earthq. Eng. 30, 702–10 (2010)
|t Soil Dyn. Earthq. Eng.
|v 30
|y 2010
999 C 5 |a 10.1016/j.engstruct.2006.05.003
|9 -- missing cx lookup --
|1 WE Daniell
|p 358 -
|2 Crossref
|u Daniell, W.E.; Macdonald, J.H.G.: Improved finite element modelling of a cable-stayed bridge through systematic manual tuning. Eng. Struct. 29, 358–71 (2007)
|t Eng. Struct.
|v 29
|y 2007
999 C 5 |2 Crossref
|u Zhang, J.; Prader, J.; Moon, F.; Aktan, E.; Wu, Z.S.: Challenges and strategies in structural identification of a long span suspension bridge. In: 6th International Workshop on Advanced Smart Materials and Smart Structures Technology (ANCRiSST), Dalian, pp 1–12 (2011)
999 C 5 |a 10.1201/b12352-555
|9 -- missing cx lookup --
|2 Crossref
|u Rahbari, A.R.; Brownjohn, J.M.W.: Finite element modelling of Humber Bridge. In: 6th International Conference on Bridge Maintenance, Safety and Management (IABMAS), Stresa, pp. 3709–16 (2012)
999 C 5 |a 10.1080/15732479.2013.863360
|9 -- missing cx lookup --
|1 D Karmakar
|p 223 -
|2 Crossref
|u Karmakar, D.; Ray-Chaudhuri, S.; Shinozuka, M.: Finite element model development, validation and probabilistic seismic performance evaluation of Vincent Thomas suspension bridge. Struct. Infrastruct. E. 11(2), 223–237 (2015)
|t Struct. Infrastruct. E.
|v 11
|y 2015
999 C 5 |a 10.1142/S0219455411004117
|9 -- missing cx lookup --
|1 YF Duan
|p 313 -
|2 Crossref
|u Duan, Y.F.; Xu, Y.L.; Fei, Q.G.; Wong, K.Y.; Chan, K.W.Y.; Ni, Y.Q.; Ng, C.L.: Advanced finite element model of Tsing Ma Bridge for structural health monitoring. Int. J. Struct. Stab. Dyn. 11, 313–344 (2011)
|t Int. J. Struct. Stab. Dyn.
|v 11
|y 2011
999 C 5 |1 JO Hallquist
|y 2006
|2 Crossref
|u Hallquist, J.O.: LS-DYNA Theory Manual. LSTC (Livermore Software Technology Corporation), Livermore, California (2006)
|t LS-DYNA Theory Manual
999 C 5 |2 Crossref
|u IHI, MHI, NKK Corp.: Record Book for the Fatih Sultan Mehmet Suspension Bridge. Tokyo (1989)
999 C 5 |2 Crossref
|u Ingenlath, P.: Seismic Finite Element Analysis of the Second Bosporus Bridge. Bachelor Engineering thesis, Department of Mechanical Engineering, Aachen University of Applied Sciences, Aachen (2010)
999 C 5 |a 10.1016/0045-7825(84)90026-4
|9 -- missing cx lookup --
|2 Crossref
|u Belytschko, T.B.; Tsay, C.S.: Explicit algorithms for the nonlinear dynamics of shells. Comput. Method. Appl. Mech. Eng. 42, 225–251 (1984)
999 C 5 |a 10.1016/0045-7825(81)90121-3
|9 -- missing cx lookup --
|1 TJR Hughes
|p 331 -
|2 Crossref
|u Hughes, T.J.R.; Liu, W.K.: Nonlinear finite element analysis of shells: part I. Three-dimensional shells. Comput. Method. Appl. Mech. Eng. 26, 331–362 (1981)
|t Comput. Method. Appl. Mech. Eng.
|v 26
|y 1981
999 C 5 |a 10.1016/0045-7825(81)90148-1
|9 -- missing cx lookup --
|1 TJR Hughes
|p 167 -
|2 Crossref
|u Hughes, T.J.R.; Liu, W.K.: Nonlinear finite element analysis of shells: part II. Two-dimensional shells. Comput. Method. Appl. Mech. Eng. 27, 167–181 (1981)
|t Comput. Method. Appl. Mech. Eng.
|v 27
|y 1981
999 C 5 |a 10.1137/S0895479888151111
|9 -- missing cx lookup --
|1 R Grimes
|p 228 -
|2 Crossref
|u Grimes, R.; Lewis, J.; Simon, H.: A shifted block Lanczos algorithm for solving sparse symmetric generalized eigenproblems. SIAM J. Matrix Anal. Appl. 15, 228–272 (1994)
|t SIAM J. Matrix Anal. Appl.
|v 15
|y 1994
999 C 5 |2 Crossref
|u The Boeing Company: Boeing Extreme Mathematical Library (BCSLIB-EXT) User’s Guide. Seattle, Washington (2000)
999 C 5 |1 RP Feynman
|y 2006
|2 Crossref
|u Feynman, R.P.; Sands, M.; Leighton, R.: The Feynman Lectures on Physics. Addison Wesley, Boston (2006)
|t The Feynman Lectures on Physics


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21