000820856 001__ 820856
000820856 005__ 20210129224627.0
000820856 0247_ $$2doi$$a10.1002/jpln.201500552
000820856 0247_ $$2ISSN$$a0044-3263
000820856 0247_ $$2ISSN$$a0366-2136
000820856 0247_ $$2ISSN$$a0372-9702
000820856 0247_ $$2ISSN$$a0932-6987
000820856 0247_ $$2ISSN$$a0932-6995
000820856 0247_ $$2ISSN$$a1436-8730
000820856 0247_ $$2ISSN$$a1522-2624
000820856 0247_ $$2WOS$$aWOS:000380907100006
000820856 037__ $$aFZJ-2016-06120
000820856 082__ $$a570
000820856 1001_ $$0P:(DE-HGF)0$$aHolzmann, Stefan$$b0$$eCorresponding author
000820856 245__ $$aImpact of anthropogenic induced nitrogen input and liming on phosphorus leaching in forest soils
000820856 260__ $$aWeinheim$$bWiley-VCH$$c2016
000820856 3367_ $$2DRIVER$$aarticle
000820856 3367_ $$2DataCite$$aOutput Types/Journal article
000820856 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1479192150_788
000820856 3367_ $$2BibTeX$$aARTICLE
000820856 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000820856 3367_ $$00$$2EndNote$$aJournal Article
000820856 520__ $$aPhosphorus (P) is essential for sustainable forest growth, yet the impact of anthropogenic impacts on P leaching losses from forest soils is hardly known. We conducted an irrigation experiment with 128 mesocosms from three forest sites representing a gradient of resin extractable P of the A-horizon. On each site we selected a Fagus sylvatica and a Picea abies managed subsite. We simulated ambient rain (AR), anthropogenic nitrogen input (NI) of 100 kg (ha · a)−1 and forest liming (FL) with a dolomite input of 0.3 Mg (ha · a)−1. Soil solution was extracted from the organic layer, 10 cm depth and 20 cm depth of the mesocosms, and analyzed for molybdate reactive phosphorus (MRP) and molybdate unreactive phosphorus (MUP). Additionally, we separated colloids from the soil solution using Asymmetric Field Flow Fractionation for assessing the colloidal fraction of total element concentrations. NI increased MRP and MUP concentrations for all plots with one exception, while FL decreased MRP and MUP with the exception of another plot. While the irrigation treatments had little impact on the P-richest site, MRP and MUP concentrations changed strongly at the poorer sites. The colloidal fraction of P in the soil solution equaled 38–47% of the total P load. Nitrogen input and liming also affected the Fe, Al, Ca, and Corg contents of the colloidal fraction.
000820856 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000820856 588__ $$aDataset connected to CrossRef
000820856 7001_ $$0P:(DE-Juel1)159255$$aMissong, Anna$$b1
000820856 7001_ $$0P:(DE-HGF)0$$aPuhlmann, Heike$$b2
000820856 7001_ $$0P:(DE-HGF)0$$aSiemens, Jan$$b3
000820856 7001_ $$0P:(DE-Juel1)145865$$aBol, Roland$$b4
000820856 7001_ $$0P:(DE-Juel1)129484$$aKlumpp, Erwin$$b5
000820856 7001_ $$0P:(DE-HGF)0$$aWilpert, Klaus von$$b6
000820856 773__ $$0PERI:(DE-600)1481142-x$$a10.1002/jpln.201500552$$gVol. 179, no. 4, p. 443 - 453$$n4$$p443 - 453$$tJournal of plant nutrition and soil science$$v179$$x1436-8730$$y2016
000820856 909CO $$ooai:juser.fz-juelich.de:820856$$pVDB:Earth_Environment$$pVDB
000820856 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159255$$aForschungszentrum Jülich$$b1$$kFZJ
000820856 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145865$$aForschungszentrum Jülich$$b4$$kFZJ
000820856 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129484$$aForschungszentrum Jülich$$b5$$kFZJ
000820856 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000820856 9141_ $$y2016
000820856 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000820856 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000820856 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PLANT NUTR SOIL SC : 2015
000820856 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000820856 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000820856 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000820856 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000820856 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000820856 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000820856 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000820856 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000820856 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000820856 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000820856 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000820856 980__ $$ajournal
000820856 980__ $$aVDB
000820856 980__ $$aUNRESTRICTED
000820856 980__ $$aI:(DE-Juel1)IBG-3-20101118