001     820862
005     20210129224627.0
024 7 _ |a 10.1016/j.jhydrol.2016.03.020
|2 doi
024 7 _ |a 0022-1694
|2 ISSN
024 7 _ |a 1879-2707
|2 ISSN
024 7 _ |a WOS:000374811200030
|2 WOS
024 7 _ |a altmetric:6257320
|2 altmetric
037 _ _ |a FZJ-2016-06126
082 _ _ |a 690
100 1 _ |a Fang, Zhufeng
|0 P:(DE-Juel1)156360
|b 0
|e Corresponding author
245 _ _ |a Scale dependent parameterization of soil hydraulic conductivity in 3D simulation of hydrological processes in a forested headwater catchment
260 _ _ |a Amsterdam [u.a.]
|c 2016
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1479192554_794
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In distributed hydrological modelling one often faces the problem that input data need to be aggregated to match the model resolution. However, aggregated data may be too coarse for the parametrization of the processes represented. This dilemma can be circumvented by the adjustment of certain model parameters. For instance, the reduction of local hydraulic gradients due to spatial aggregation can be partially compensated by increasing soil hydraulic conductivity. In this study, we employed the information entropy concept for the scale dependent parameterization of soil hydraulic conductivity. The loss of information content of terrain curvature as consequence of spatial aggregation was used to determine an amplification factor for soil hydraulic conductivity to compensate the resulting retardation of water flow. To test the usefulness of this approach, continuous 3D hydrological simulations were conducted with different spatial resolutions in the highly instrumented Wüstebach catchment, Germany. Our results indicated that the introduction of an amplification factor can effectively improve model performances both in terms of soil moisture and runoff simulation. However, comparing simulated soil moisture pattern with observation indicated that uniform application of an amplification factor can lead to local overcorrection of soil hydraulic conductivity. This problem could be circumvented by applying the amplification factor only to model grid cells that suffer from high information loss. To this end, we tested two schemes to define appropriate location-specific correction factors. Both schemes led to improved model performance both in terms of soil water content and runoff simulation. Thus, we anticipate that our proposed scaling approach is useful for the application of next-generation hyper-resolution global land surface models
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bogena, Heye
|0 P:(DE-Juel1)129440
|b 1
700 1 _ |a Kollet, Stefan
|0 P:(DE-Juel1)151405
|b 2
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 3
773 _ _ |a 10.1016/j.jhydrol.2016.03.020
|g Vol. 536, p. 365 - 375
|0 PERI:(DE-600)1473173-3
|p 365 - 375
|t Journal of hydrology
|v 536
|y 2016
|x 0022-1694
856 4 _ |u https://juser.fz-juelich.de/record/820862/files/1-s2.0-S0022169416301251-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/820862/files/1-s2.0-S0022169416301251-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/820862/files/1-s2.0-S0022169416301251-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/820862/files/1-s2.0-S0022169416301251-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/820862/files/1-s2.0-S0022169416301251-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/820862/files/1-s2.0-S0022169416301251-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:820862
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156360
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129440
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)151405
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129549
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J HYDROL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21