001     820864
005     20210129224628.0
024 7 _ |2 doi
|a 10.1002/2015GL066916
024 7 _ |2 ISSN
|a 0094-8276
024 7 _ |2 ISSN
|a 1944-8007
024 7 _ |2 WOS
|a WOS:000372056400027
024 7 _ |2 Handle
|a 2128/16070
024 7 _ |a altmetric:4886113
|2 altmetric
037 _ _ |a FZJ-2016-06128
082 _ _ |a 550
100 1 _ |0 P:(DE-HGF)0
|a Maxwell, Reed M
|b 0
|e Corresponding author
245 _ _ |a The imprint of climate and geology on the residence times of groundwater
260 _ _ |a Hoboken, NJ
|b Wiley
|c 2016
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1512377765_12597
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Surface and subsurface flow dynamics govern residence time or water age until discharge, which is a key metric of storage and water availability for human use and ecosystem function. Although observations in small catchments have shown a fractal distribution of ages, residence times are difficult to directly quantify or measure in large basins. Here we use a simulation of major watersheds across North America to compute distributions of residence times. This simulation results in peak ages from 1.5 to 10.5 years, in agreement with isotopic observations from bomb-derived radioisotopes, and a wide range of residence times—from 0.1 to 10,000 years. This simulation suggests that peak residence times are controlled by the mean hydraulic conductivity, a function of the prevailing geology. The shape of the residence time distribution is dependent on aridity, which in turn determines water table depth and the frequency of shorter flow paths. These model results underscore the need for additional studies to characterize water ages in larger systems.
536 _ _ |0 G:(DE-HGF)POF3-255
|a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Condon, Laura E
|b 1
700 1 _ |0 P:(DE-Juel1)151405
|a Kollet, Stefan
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Maher, Kate
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Haggerty, Roy
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Forrester, Mary Michael
|b 5
773 _ _ |0 PERI:(DE-600)2021599-X
|a 10.1002/2015GL066916
|g Vol. 43, no. 2, p. 701 - 708
|n 2
|p 701 - 708
|t Geophysical research letters
|v 43
|x 0094-8276
|y 2016
856 4 _ |u https://juser.fz-juelich.de/record/820864/files/Maxwell_et_al-2016-Geophysical_Research_Letters-1.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/820864/files/Maxwell_et_al-2016-Geophysical_Research_Letters-1.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/820864/files/Maxwell_et_al-2016-Geophysical_Research_Letters-1.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/820864/files/Maxwell_et_al-2016-Geophysical_Research_Letters-1.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/820864/files/Maxwell_et_al-2016-Geophysical_Research_Letters-1.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/820864/files/Maxwell_et_al-2016-Geophysical_Research_Letters-1.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:820864
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)151405
|a Forschungszentrum Jülich
|b 2
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-255
|1 G:(DE-HGF)POF3-250
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|l Terrestrische Umwelt
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2016
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b GEOPHYS RES LETT : 2015
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21