000820871 001__ 820871
000820871 005__ 20210129224630.0
000820871 0247_ $$2doi$$a10.1109/TGRS.2016.2529659
000820871 0247_ $$2ISSN$$a0018-9413
000820871 0247_ $$2ISSN$$a0196-2892
000820871 0247_ $$2ISSN$$a1558-0644
000820871 0247_ $$2WOS$$aWOS:000377478400012
000820871 037__ $$aFZJ-2016-06135
000820871 082__ $$a550
000820871 1001_ $$0P:(DE-Juel1)129506$$aMontzka, Carsten$$b0$$ufzj
000820871 245__ $$aInvestigation of SMAP Fusion Algorithms With Airborne Active and Passive L-Band Microwave Remote Sensing
000820871 260__ $$aNew York, NY$$bIEEE$$c2016
000820871 3367_ $$2DRIVER$$aarticle
000820871 3367_ $$2DataCite$$aOutput Types/Journal article
000820871 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1479118476_4503
000820871 3367_ $$2BibTeX$$aARTICLE
000820871 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000820871 3367_ $$00$$2EndNote$$aJournal Article
000820871 520__ $$aThe objective of the NASA Soil Moisture Active Passive (SMAP) mission is to provide global measurements of soil moisture and freeze/thaw states. SMAP integrates L-band radar and radiometer instruments as a single observation system combining the respective strengths of active and passive remote sensing for enhanced soil moisture mapping. Airborne instruments are a key part of the SMAP validation program. Here, we present an airborne campaign in the Rur catchment, Germany, in which the passive L-band system Polarimetric L-band Multi-beam Radiometer and the active L-band system F-SAR of DLR were flown simultaneously on six dates in 2013. The flights covered the full heterogeneity of the area under investigation, i.e., the main land cover types and all experimental monitoring sites. Here, we used the obtained data sets as a test bed for the analysis of three active-passive fusion techniques: 1) estimation of soil moisture by passive sensor data and subsequent disaggregation by active sensor backscatter data; 2) disaggregation of passive microwave brightness temperature by active microwave backscatter and subsequent inversion to soil moisture; and 3) fusion of two single-source soil moisture products from radar and radiometer. Results indicate that the regression parameters β are dependent on the radar vegetation index. The best performance was obtained by the fusion of radiometer brightness temperatures and radar backscatter, which was able to reach the same accuracy as single-source coarse-scale radiometer soil moisture retrieval but on a higher spatial resolution.
000820871 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000820871 588__ $$aDataset connected to CrossRef
000820871 7001_ $$0P:(DE-HGF)0$$aJagdhuber, Thomas$$b1
000820871 7001_ $$0P:(DE-HGF)0$$aHorn, Ralf$$b2
000820871 7001_ $$0P:(DE-Juel1)129440$$aBogena, Heye$$b3$$ufzj
000820871 7001_ $$0P:(DE-HGF)0$$aHajnsek, Irena$$b4
000820871 7001_ $$0P:(DE-HGF)0$$aReigber, Andreas$$b5
000820871 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b6$$ufzj
000820871 773__ $$0PERI:(DE-600)2027520-1$$a10.1109/TGRS.2016.2529659$$gVol. 54, no. 7, p. 3878 - 3889$$n7$$p3878 - 3889$$tIEEE transactions on geoscience and remote sensing$$v54$$x1558-0644$$y2016
000820871 8564_ $$uhttps://juser.fz-juelich.de/record/820871/files/07426813.pdf$$yRestricted
000820871 8564_ $$uhttps://juser.fz-juelich.de/record/820871/files/07426813.gif?subformat=icon$$xicon$$yRestricted
000820871 8564_ $$uhttps://juser.fz-juelich.de/record/820871/files/07426813.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000820871 8564_ $$uhttps://juser.fz-juelich.de/record/820871/files/07426813.jpg?subformat=icon-180$$xicon-180$$yRestricted
000820871 8564_ $$uhttps://juser.fz-juelich.de/record/820871/files/07426813.jpg?subformat=icon-640$$xicon-640$$yRestricted
000820871 8564_ $$uhttps://juser.fz-juelich.de/record/820871/files/07426813.pdf?subformat=pdfa$$xpdfa$$yRestricted
000820871 909CO $$ooai:juser.fz-juelich.de:820871$$pVDB:Earth_Environment$$pVDB
000820871 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129506$$aForschungszentrum Jülich$$b0$$kFZJ
000820871 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129440$$aForschungszentrum Jülich$$b3$$kFZJ
000820871 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b6$$kFZJ
000820871 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000820871 9141_ $$y2016
000820871 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000820871 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000820871 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000820871 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE T GEOSCI REMOTE : 2015
000820871 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000820871 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000820871 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000820871 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000820871 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000820871 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000820871 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000820871 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000820871 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000820871 980__ $$ajournal
000820871 980__ $$aVDB
000820871 980__ $$aUNRESTRICTED
000820871 980__ $$aI:(DE-Juel1)IBG-3-20101118