001     820871
005     20210129224630.0
024 7 _ |a 10.1109/TGRS.2016.2529659
|2 doi
024 7 _ |a 0018-9413
|2 ISSN
024 7 _ |a 0196-2892
|2 ISSN
024 7 _ |a 1558-0644
|2 ISSN
024 7 _ |a WOS:000377478400012
|2 WOS
037 _ _ |a FZJ-2016-06135
082 _ _ |a 550
100 1 _ |a Montzka, Carsten
|0 P:(DE-Juel1)129506
|b 0
|u fzj
245 _ _ |a Investigation of SMAP Fusion Algorithms With Airborne Active and Passive L-Band Microwave Remote Sensing
260 _ _ |a New York, NY
|c 2016
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1479118476_4503
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The objective of the NASA Soil Moisture Active Passive (SMAP) mission is to provide global measurements of soil moisture and freeze/thaw states. SMAP integrates L-band radar and radiometer instruments as a single observation system combining the respective strengths of active and passive remote sensing for enhanced soil moisture mapping. Airborne instruments are a key part of the SMAP validation program. Here, we present an airborne campaign in the Rur catchment, Germany, in which the passive L-band system Polarimetric L-band Multi-beam Radiometer and the active L-band system F-SAR of DLR were flown simultaneously on six dates in 2013. The flights covered the full heterogeneity of the area under investigation, i.e., the main land cover types and all experimental monitoring sites. Here, we used the obtained data sets as a test bed for the analysis of three active-passive fusion techniques: 1) estimation of soil moisture by passive sensor data and subsequent disaggregation by active sensor backscatter data; 2) disaggregation of passive microwave brightness temperature by active microwave backscatter and subsequent inversion to soil moisture; and 3) fusion of two single-source soil moisture products from radar and radiometer. Results indicate that the regression parameters β are dependent on the radar vegetation index. The best performance was obtained by the fusion of radiometer brightness temperatures and radar backscatter, which was able to reach the same accuracy as single-source coarse-scale radiometer soil moisture retrieval but on a higher spatial resolution.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Jagdhuber, Thomas
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Horn, Ralf
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bogena, Heye
|0 P:(DE-Juel1)129440
|b 3
|u fzj
700 1 _ |a Hajnsek, Irena
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Reigber, Andreas
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 6
|u fzj
773 _ _ |a 10.1109/TGRS.2016.2529659
|g Vol. 54, no. 7, p. 3878 - 3889
|0 PERI:(DE-600)2027520-1
|n 7
|p 3878 - 3889
|t IEEE transactions on geoscience and remote sensing
|v 54
|y 2016
|x 1558-0644
856 4 _ |u https://juser.fz-juelich.de/record/820871/files/07426813.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/820871/files/07426813.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/820871/files/07426813.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/820871/files/07426813.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/820871/files/07426813.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/820871/files/07426813.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:820871
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129506
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129440
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129549
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE T GEOSCI REMOTE : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21