000820873 001__ 820873
000820873 005__ 20210129224631.0
000820873 0247_ $$2doi$$a10.1039/C6JA00027D
000820873 0247_ $$2ISSN$$a0267-9477
000820873 0247_ $$2ISSN$$a1364-5544
000820873 0247_ $$2WOS$$aWOS:000382071200011
000820873 0247_ $$2altmetric$$aaltmetric:7129480
000820873 037__ $$aFZJ-2016-06137
000820873 082__ $$a540
000820873 1001_ $$0P:(DE-Juel1)157638$$aNischwitz, Volker$$b0$$eCorresponding author
000820873 245__ $$aField flow fractionation online with ICP-MS as novel approach for the quantification of fine particulate carbon in stream water samples and soil extracts
000820873 260__ $$aCambridge$$bChemSoc$$c2016
000820873 3367_ $$2DRIVER$$aarticle
000820873 3367_ $$2DataCite$$aOutput Types/Journal article
000820873 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1479118976_4499
000820873 3367_ $$2BibTeX$$aARTICLE
000820873 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000820873 3367_ $$00$$2EndNote$$aJournal Article
000820873 520__ $$aReliable and efficient analytical techniques are required for quantitative size-resolved carbon determination of nanoparticles and colloids in complex sample matrices due to the key role of carbon in biological and environmental processes. Field flow fractionation (FFF) online with inductively coupled plasma mass spectrometry (ICP-MS) is a powerful technique for identification and quantification of particle bound metals, but has not been applied for quantitative determination of particulate carbon, yet, due to several challenges. Therefore, our study explores the potential of online particulate carbon detection by ICP-MS to overcome limitations of previously used UV detection or offline total organic carbon measurements. A novel organic carbon detector (OCD) was used as independent sensitive carbon detector to validate the ICP-MS results. Basic validation of organic carbon detection by offline quadrupole and sector-field ICP-MS was performed for fresh water samples using OCD as reference achieving recoveries of 107 ± 16% with Q-ICP-MS and 122 ± 22% with SF-ICP-MS. Limits of detection were 0.6 mg L−1 for Q-ICP-MS, 0.3 mg L−1 for SF-ICP-MS and 0.04 mg L−1 for OCD. The main focus was on comparison of FFF-ICP-MS and FFF-OCD for quantification of particulate carbon in fresh water samples, soil extracts as well as in bovine serum albumin (BSA) as candidate reference standard. Recoveries obtained by FFF-Q-ICP-MS with a flow-injection calibration approach were in a range from 90 to 113% for replicate analyses of fresh water samples compared to FFF-OCD and from 87 to 107% with an alternative post-channel calibration strategy.
000820873 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000820873 588__ $$aDataset connected to CrossRef
000820873 7001_ $$0P:(DE-Juel1)156558$$aGottselig, Nina$$b1
000820873 7001_ $$0P:(DE-Juel1)159255$$aMissong, Anna$$b2
000820873 7001_ $$0P:(DE-HGF)0$$aMeyn, Thomas$$b3
000820873 7001_ $$0P:(DE-Juel1)129484$$aKlumpp, Erwin$$b4
000820873 773__ $$0PERI:(DE-600)1484654-8$$a10.1039/C6JA00027D$$gVol. 31, no. 9, p. 1858 - 1868$$n9$$p1858 - 1868$$tJournal of analytical atomic spectrometry$$v31$$x1364-5544$$y2016
000820873 8564_ $$uhttps://juser.fz-juelich.de/record/820873/files/c6ja00027d.pdf$$yRestricted
000820873 8564_ $$uhttps://juser.fz-juelich.de/record/820873/files/c6ja00027d.gif?subformat=icon$$xicon$$yRestricted
000820873 8564_ $$uhttps://juser.fz-juelich.de/record/820873/files/c6ja00027d.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000820873 8564_ $$uhttps://juser.fz-juelich.de/record/820873/files/c6ja00027d.jpg?subformat=icon-180$$xicon-180$$yRestricted
000820873 8564_ $$uhttps://juser.fz-juelich.de/record/820873/files/c6ja00027d.jpg?subformat=icon-640$$xicon-640$$yRestricted
000820873 8564_ $$uhttps://juser.fz-juelich.de/record/820873/files/c6ja00027d.pdf?subformat=pdfa$$xpdfa$$yRestricted
000820873 909CO $$ooai:juser.fz-juelich.de:820873$$pVDB:Earth_Environment$$pVDB
000820873 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157638$$aForschungszentrum Jülich$$b0$$kFZJ
000820873 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156558$$aForschungszentrum Jülich$$b1$$kFZJ
000820873 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159255$$aForschungszentrum Jülich$$b2$$kFZJ
000820873 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129484$$aForschungszentrum Jülich$$b4$$kFZJ
000820873 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000820873 9141_ $$y2016
000820873 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000820873 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000820873 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000820873 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000820873 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ANAL ATOM SPECTROM : 2015
000820873 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000820873 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000820873 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000820873 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000820873 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000820873 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000820873 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000820873 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000820873 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000820873 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000820873 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000820873 980__ $$ajournal
000820873 980__ $$aVDB
000820873 980__ $$aUNRESTRICTED
000820873 980__ $$aI:(DE-Juel1)IBG-3-20101118