001     820877
005     20220930130109.0
024 7 _ |2 doi
|a 10.1002/jpln.201600079
024 7 _ |2 ISSN
|a 0044-3263
024 7 _ |2 ISSN
|a 0366-2136
024 7 _ |2 ISSN
|a 0372-9702
024 7 _ |2 ISSN
|a 0932-6987
024 7 _ |2 ISSN
|a 0932-6995
024 7 _ |2 ISSN
|a 1436-8730
024 7 _ |2 ISSN
|a 1522-2624
024 7 _ |2 Handle
|a 2128/12779
024 7 _ |2 WOS
|a WOS:000380907100004
024 7 _ |a altmetric:10406173
|2 altmetric
037 _ _ |a FZJ-2016-06141
082 _ _ |a 570
100 1 _ |0 P:(DE-Juel1)145865
|a Bol, Roland
|b 0
245 _ _ |a Dissolved and colloidal phosphorus fluxes in forest ecosystems-an almost blind spot in ecosystem research
260 _ _ |a Weinheim
|b Wiley-VCH
|c 2016
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1479129793_4500
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Understanding and quantification of phosphorus (P) fluxes are key requirements for predictions of future forest ecosystems changes as well as for transferring lessons learned from natural ecosystems to croplands and plantations. This review summarizes and evaluates the recent knowledge on mechanisms, magnitude, and relevance by which dissolved and colloidal inorganic and organic P forms can be translocated within or exported from forest ecosystems. Attention is paid to hydrological pathways of P losses at the soil profile and landscape scales, and the subsequent influence of P on aquatic ecosystems. New (unpublished) data from the German Priority Program 1685 “Ecosystem Nutrition: Forest Strategies for limited Phosphorus Resources” were added to provide up-to-date flux-based information.Nitrogen (N) additions increase the release of water-transportable P forms. Most P found in percolates and pore waters belongs to the so-called dissolved organic P (DOP) fractions, rich in orthophosphate-monoesters and also containing some orthophosphate-diesters. Total solution P concentrations range from ca. 1 to 400 µg P L−1, with large variations among forest stands. Recent sophisticated analyses revealed that large portions of the DOP in forest stream water can comprise natural nanoparticles and fine colloids which under extreme conditions may account for 40–100% of the P losses. Their translocation within preferential flow passes may be rapid, mediated by storm events. The potential total P loss through leaching into subsoils and with streams was found to be less than 50 mg P m−2 a−1, suggesting effects on ecosystems at centennial to millennium scale. All current data are based on selected snapshots only. Quantitative measurements of P fluxes in temperate forest systems are nearly absent in the literature, probably due to main research focus on the C and N cycles. Therefore, we lack complete ecosystem-based assessments of dissolved and colloidal P fluxes within and from temperate forest systems.
536 _ _ |0 G:(DE-HGF)POF3-255
|a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Julich, Dorit
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Brödlin, Dominik
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Siemens, Jan
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Kaiser, Klaus
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Dippold, Michaela Anna
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Spielvogel, Sandra
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Zilla, Thomas
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Mewes, Daniela
|b 8
700 1 _ |0 P:(DE-HGF)0
|a von Blanckenburg, Friedhelm
|b 9
700 1 _ |0 P:(DE-HGF)0
|a Puhlmann, Heike
|b 10
700 1 _ |0 P:(DE-HGF)0
|a Holzmann, Stefan
|b 11
700 1 _ |0 P:(DE-HGF)0
|a Weiler, Markus
|b 12
700 1 _ |0 P:(DE-Juel1)129427
|a Amelung, Wulf
|b 13
700 1 _ |0 P:(DE-HGF)0
|a Lang, Friederike
|b 14
700 1 _ |0 P:(DE-HGF)0
|a Kuzyakov, Yakov
|b 15
700 1 _ |0 P:(DE-HGF)0
|a Feger, Karl-Heinz
|b 16
700 1 _ |0 P:(DE-Juel1)156558
|a Gottselig, Nina
|b 17
700 1 _ |0 P:(DE-Juel1)129484
|a Klumpp, Erwin
|b 18
700 1 _ |0 P:(DE-Juel1)159255
|a Missong, Anna
|b 19
700 1 _ |0 P:(DE-HGF)0
|a Winkelmann, Carola
|b 20
700 1 _ |0 P:(DE-HGF)0
|a Uhlig, David
|b 21
700 1 _ |0 P:(DE-HGF)0
|a Sohrt, Jakob
|b 22
700 1 _ |0 P:(DE-HGF)0
|a von Wilpert, Klaus
|b 23
700 1 _ |0 P:(DE-Juel1)138881
|a Wu, Bei
|b 24
|e Corresponding author
700 1 _ |0 P:(DE-HGF)0
|a Hagedorn, Frank
|b 25
773 _ _ |0 PERI:(DE-600)1481142-x
|a 10.1002/jpln.201600079
|g Vol. 179, no. 4, p. 425 - 438
|n 4
|p 425 - 438
|t Journal of plant nutrition and soil science
|v 179
|x 1436-8730
|y 2016
856 4 _ |u https://juser.fz-juelich.de/record/820877/files/2016_P%20flux%20review.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/820877/files/2016_P%20flux%20review.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/820877/files/2016_P%20flux%20review.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/820877/files/2016_P%20flux%20review.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/820877/files/2016_P%20flux%20review.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/820877/files/2016_P%20flux%20review.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:820877
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145865
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129427
|a Forschungszentrum Jülich
|b 13
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)156558
|a Forschungszentrum Jülich
|b 17
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129484
|a Forschungszentrum Jülich
|b 18
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)159255
|a Forschungszentrum Jülich
|b 19
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)138881
|a Forschungszentrum Jülich
|b 24
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-255
|1 G:(DE-HGF)POF3-250
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|l Terrestrische Umwelt
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2016
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
|a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b J PLANT NUTR SOIL SC : 2015
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)1060
|2 StatID
|a DBCoverage
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21