000820882 001__ 820882
000820882 005__ 20210129224636.0
000820882 0247_ $$2doi$$a10.1016/j.geoderma.2016.02.022
000820882 0247_ $$2ISSN$$a0016-7061
000820882 0247_ $$2ISSN$$a1872-6259
000820882 0247_ $$2WOS$$aWOS:000373541800019
000820882 037__ $$aFZJ-2016-06146
000820882 082__ $$a550
000820882 1001_ $$0P:(DE-HGF)0$$aWang, Milan$$b0
000820882 245__ $$aIron oxidation affects nitrous oxide emissions via donating electrons to denitrification in paddy soils
000820882 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2016
000820882 3367_ $$2DRIVER$$aarticle
000820882 3367_ $$2DataCite$$aOutput Types/Journal article
000820882 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1479130363_4506
000820882 3367_ $$2BibTeX$$aARTICLE
000820882 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000820882 3367_ $$00$$2EndNote$$aJournal Article
000820882 520__ $$aPaddy soils are important source of nitrous oxide (N2O), which production is mainly regulated through redox processes and electron transfer. Ferrous iron [Fe(II)] oxidation coupled to denitrification is ubiquitous in paddy soils, which could affect N2O production via donating electrons to denitrification. To clarify the effects of Fe(II) oxidation on denitrification and N2O emissions, a flooding experiment was conducted in two paddy soils with contrasting Fe(II) levels. The soil with high Fe(II) concentration emitted less N2O than did the other soil with low Fe(II) concentration. Nitrate addition decreased Fe(II) concentration and stimulated N2O production in both soils, suggesting that Fe(II) oxidation is coupled to denitrification. The stoichiometry of electron transfer between nitrate reduction and Fe(II) oxidation demonstrated that the percentage of electrons contributed by Fe(II) to denitrification accounted for 16.2% and 32.9%, and the ratios of the electrons donated by Fe(II) to the electrons accepted by nitrate for N2O production were 43.7% and 130.7% in the two soils with low and high Fe(II) concentration, respectively. The ratio beyond 100% implies that the electrons donated by high Fe(II) concentration exceed the electron demand for N2O production, which lead to the further reduction of N2O to N2. In conclusion, Fe(II) oxidation coupled to denitrification affects N2O emissions via electron donation, and Fe(II) in a high concentration bears great potential for efficient denitrification and low N2O emissions from paddy soils.
000820882 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000820882 588__ $$aDataset connected to CrossRef
000820882 7001_ $$0P:(DE-HGF)0$$aHu, Ronggui$$b1$$eCorresponding author
000820882 7001_ $$0P:(DE-HGF)0$$aZhao, Jinsong$$b2
000820882 7001_ $$0P:(DE-HGF)0$$aKuzyakov, Yakov$$b3
000820882 7001_ $$0P:(DE-Juel1)156153$$aLiu, Shurong$$b4
000820882 773__ $$0PERI:(DE-600)2001729-7$$a10.1016/j.geoderma.2016.02.022$$gVol. 271, p. 173 - 180$$p173 - 180$$tGeoderma$$v271$$x0016-7061$$y2016
000820882 8564_ $$uhttps://juser.fz-juelich.de/record/820882/files/1-s2.0-S0016706116300829-main.pdf$$yRestricted
000820882 8564_ $$uhttps://juser.fz-juelich.de/record/820882/files/1-s2.0-S0016706116300829-main.gif?subformat=icon$$xicon$$yRestricted
000820882 8564_ $$uhttps://juser.fz-juelich.de/record/820882/files/1-s2.0-S0016706116300829-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000820882 8564_ $$uhttps://juser.fz-juelich.de/record/820882/files/1-s2.0-S0016706116300829-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000820882 8564_ $$uhttps://juser.fz-juelich.de/record/820882/files/1-s2.0-S0016706116300829-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000820882 8564_ $$uhttps://juser.fz-juelich.de/record/820882/files/1-s2.0-S0016706116300829-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000820882 909CO $$ooai:juser.fz-juelich.de:820882$$pVDB:Earth_Environment$$pVDB
000820882 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156153$$aForschungszentrum Jülich$$b4$$kFZJ
000820882 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000820882 9141_ $$y2016
000820882 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000820882 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000820882 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000820882 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000820882 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEODERMA : 2015
000820882 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000820882 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000820882 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000820882 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000820882 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000820882 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000820882 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000820882 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000820882 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000820882 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000820882 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000820882 980__ $$ajournal
000820882 980__ $$aVDB
000820882 980__ $$aUNRESTRICTED
000820882 980__ $$aI:(DE-Juel1)IBG-3-20101118