001     820882
005     20210129224636.0
024 7 _ |a 10.1016/j.geoderma.2016.02.022
|2 doi
024 7 _ |a 0016-7061
|2 ISSN
024 7 _ |a 1872-6259
|2 ISSN
024 7 _ |a WOS:000373541800019
|2 WOS
037 _ _ |a FZJ-2016-06146
082 _ _ |a 550
100 1 _ |a Wang, Milan
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Iron oxidation affects nitrous oxide emissions via donating electrons to denitrification in paddy soils
260 _ _ |a Amsterdam [u.a.]
|c 2016
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1479130363_4506
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Paddy soils are important source of nitrous oxide (N2O), which production is mainly regulated through redox processes and electron transfer. Ferrous iron [Fe(II)] oxidation coupled to denitrification is ubiquitous in paddy soils, which could affect N2O production via donating electrons to denitrification. To clarify the effects of Fe(II) oxidation on denitrification and N2O emissions, a flooding experiment was conducted in two paddy soils with contrasting Fe(II) levels. The soil with high Fe(II) concentration emitted less N2O than did the other soil with low Fe(II) concentration. Nitrate addition decreased Fe(II) concentration and stimulated N2O production in both soils, suggesting that Fe(II) oxidation is coupled to denitrification. The stoichiometry of electron transfer between nitrate reduction and Fe(II) oxidation demonstrated that the percentage of electrons contributed by Fe(II) to denitrification accounted for 16.2% and 32.9%, and the ratios of the electrons donated by Fe(II) to the electrons accepted by nitrate for N2O production were 43.7% and 130.7% in the two soils with low and high Fe(II) concentration, respectively. The ratio beyond 100% implies that the electrons donated by high Fe(II) concentration exceed the electron demand for N2O production, which lead to the further reduction of N2O to N2. In conclusion, Fe(II) oxidation coupled to denitrification affects N2O emissions via electron donation, and Fe(II) in a high concentration bears great potential for efficient denitrification and low N2O emissions from paddy soils.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hu, Ronggui
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Zhao, Jinsong
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kuzyakov, Yakov
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Liu, Shurong
|0 P:(DE-Juel1)156153
|b 4
773 _ _ |a 10.1016/j.geoderma.2016.02.022
|g Vol. 271, p. 173 - 180
|0 PERI:(DE-600)2001729-7
|p 173 - 180
|t Geoderma
|v 271
|y 2016
|x 0016-7061
856 4 _ |u https://juser.fz-juelich.de/record/820882/files/1-s2.0-S0016706116300829-main.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/820882/files/1-s2.0-S0016706116300829-main.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/820882/files/1-s2.0-S0016706116300829-main.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/820882/files/1-s2.0-S0016706116300829-main.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/820882/files/1-s2.0-S0016706116300829-main.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/820882/files/1-s2.0-S0016706116300829-main.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:820882
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)156153
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GEODERMA : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21