001     820891
005     20210129224639.0
024 7 _ |a 10.1016/j.rse.2016.10.029
|2 doi
024 7 _ |a 0034-4257
|2 ISSN
024 7 _ |a 1879-0704
|2 ISSN
024 7 _ |a WOS:000390494000016
|2 WOS
037 _ _ |a FZJ-2016-06155
082 _ _ |a 050
100 1 _ |a Babaeian, E.
|0 P:(DE-Juel1)159210
|b 0
245 _ _ |a Soil moisture prediction of bare soil profiles using diffuse spectral reflectance information and vadose zone flow modeling
260 _ _ |a Amsterdam [u.a.]
|c 2016
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1479131495_4502
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Soil hydraulic property information of the vadose zone is key to quantifying the temporal and spatial variability of soil moisture, and for modeling water flow and contaminant transport processes in the near surface. This study deals with exploring the feasibility of using diffuse soil spectral information in the visible, near-infrared and shortwave infrared range (350–2500 nm) to estimate coarse-scale soil hydraulic parameters and predict soil moisture profiles using a topography-based aggregation scheme in conjunction with a 1D mechanistic water flow model. Three different types of parametric transfer functions (so-called spectrotransfer functions, STFs; pedotransfer functions, PTFs; and spectral pedotransfer functions, SPTFs) were aggregated from the point scale to 1 km2 pixel size. to provide coarse scale estimates of van Genuchten-Mualem (VGM) hydraulic parameters. The coarse scale hydraulic parameters were evaluated by simulating soil water dynamics of the 1 km2 pixels across the Zanjanrood River sub-watershed (ZRS) in northwest Iran. Resultant soil water states were compared with ground-truth measurements and advanced synthetic aperture radar (ASAR) estimates of soil water content. The topography-based aggregation scheme was found to provide effective values of the VGM hydraulic parameters across the ZRS study site. The coarse scale STFs performed best in terms of simulating surface, near-surface and subsurface soil water dynamics, followed by the coarse scale SPTFs and PTFs, which performed similarly. The average simulated soil water contents of the surface layer closely correlated with ASAR estimates during relatively wet periods. Simulated subsurface soil water dynamics matched well with the ground-truth measurements. These findings indicate the feasibility of using spectral data to predict VGM hydraulic parameters and, ultimately, to predict soil water dynamics at the larger scales.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Homaee, M.
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Montzka, C.
|0 P:(DE-Juel1)129506
|b 2
700 1 _ |a Vereecken, H.
|0 P:(DE-Juel1)129549
|b 3
700 1 _ |a Norouzi, A. A.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a van Genuchten, M. Th.
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1016/j.rse.2016.10.029
|g Vol. 187, p. 218 - 229
|0 PERI:(DE-600)1498713-2
|p 218 - 229
|t Remote sensing of environment
|v 187
|y 2016
|x 0034-4257
856 4 _ |u https://juser.fz-juelich.de/record/820891/files/1-s2.0-S0034425716304011-main.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/820891/files/1-s2.0-S0034425716304011-main.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/820891/files/1-s2.0-S0034425716304011-main.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/820891/files/1-s2.0-S0034425716304011-main.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/820891/files/1-s2.0-S0034425716304011-main.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/820891/files/1-s2.0-S0034425716304011-main.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:820891
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129506
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129549
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b REMOTE SENS ENVIRON : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b REMOTE SENS ENVIRON : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21