Home > Publications database > An improved $^{15}$ N tracer approach to study denitrification and nitrogen turnover in soil incubations > print |
001 | 820892 | ||
005 | 20210129224640.0 | ||
024 | 7 | _ | |a 10.1002/rcm.7689 |2 doi |
024 | 7 | _ | |a 0951-4198 |2 ISSN |
024 | 7 | _ | |a 1097-0231 |2 ISSN |
024 | 7 | _ | |a WOS:000382976800004 |2 WOS |
024 | 7 | _ | |a altmetric:10645866 |2 altmetric |
024 | 7 | _ | |a pmid:27470312 |2 pmid |
037 | _ | _ | |a FZJ-2016-06156 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Scheer, Clemens |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a An improved $^{15}$ N tracer approach to study denitrification and nitrogen turnover in soil incubations |
260 | _ | _ | |a New York, NY |c 2016 |b Wiley Interscience |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1479131630_4508 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a RationaleDenitrification (the reduction of oxidized forms of inorganic nitrogen (N) to N2O and N2) from upland soils is considered to be the least well-understood process in the global N cycle. The main reason for this lack of understanding is that the terminal product (N2) of denitrification is extremely difficult to measure against the large atmospheric background.MethodsWe describe a system that combines the 15N-tracer technique with a 40-fold reduced N2 (2% v/v) atmosphere in a fully automated incubation setup for direct quantification of N2 and N2O emissions. The δ15N values of the emitted N2 and N2O were determined using a custom-built gas preparation unit that was connected to a DELTA V Plus isotope ratio mass spectrometer. The system was tested on a pasture soil from sub-tropical Australia under different soil moisture conditions and combined with 15N tracing in extractable soil N pools to establish a full N balance.ResultsThe method proved to be highly sensitive for detecting N2 (1.12 μg N h−1 kg−1 dry soil (ds)) and N2O (0.36 μg N h−1 kg−1 ds) emissions. The main end product of denitrification in the investigated soil was N2O for both water contents, with N2 accounting for only 3% to 13% of the total denitrification losses. Between 90 and 95% of the added 15N fertiliser could be recovered in N gases and extractable soil N pools. |
536 | _ | _ | |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) |0 G:(DE-HGF)POF3-255 |c POF3-255 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Meier, Rudolf |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Brüggemann, Nicolas |0 P:(DE-Juel1)142357 |b 2 |
700 | 1 | _ | |a Grace, Peter R. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Dannenmann, Michael |0 P:(DE-HGF)0 |b 4 |
773 | _ | _ | |a 10.1002/rcm.7689 |g Vol. 30, no. 18, p. 2017 - 2026 |0 PERI:(DE-600)2002158-6 |n 18 |p 2017 - 2026 |t Rapid communications in mass spectrometry |v 30 |y 2016 |x 0951-4198 |
909 | C | O | |o oai:juser.fz-juelich.de:820892 |p VDB |p VDB:Earth_Environment |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)142357 |
913 | 1 | _ | |a DE-HGF |l Terrestrische Umwelt |1 G:(DE-HGF)POF3-250 |0 G:(DE-HGF)POF3-255 |2 G:(DE-HGF)POF3-200 |v Terrestrial Systems: From Observation to Prediction |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Erde und Umwelt |
914 | 1 | _ | |y 2016 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b RAPID COMMUN MASS SP : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a No Authors Fulltext |0 StatID:(DE-HGF)0550 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-3-20101118 |k IBG-3 |l Agrosphäre |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IBG-3-20101118 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|