001     820893
005     20220930130109.0
024 7 _ |a 10.1016/j.jhydrol.2015.12.050
|2 doi
024 7 _ |a 0022-1694
|2 ISSN
024 7 _ |a 1879-2707
|2 ISSN
024 7 _ |a WOS:000371940900013
|2 WOS
037 _ _ |a FZJ-2016-06157
082 _ _ |a 690
100 1 _ |a Wiekenkamp, I.
|0 P:(DE-Juel1)157744
|b 0
|e Corresponding author
245 _ _ |a Spatial and temporal occurrence of preferential flow in a forested headwater catchment
260 _ _ |a Amsterdam [u.a.]
|c 2016
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1479131759_4501
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The highly dynamic nature of preferential flow in time and space makes it challenging to identify and analyze its occurrence at the catchment scale. Novel analysis methods using soil moisture sensor response times offer an opportunity to investigate catchment-wide controls on preferential flow. The aim of this study was to identify factors that control preferential flow occurrence based on 3-year soil moisture monitoring using a wireless sensor network in the Wüstebach catchment, Germany. At 101 locations, the sensor response times at three depths (5, 20, and 50 cm) were classified into one of four classes: (1) non-sequential preferential flow, (2) velocity-based preferential flow, (3) sequential flow, and (4) no response. A conceptual model, postulating that preferential flow in the Wüstebach catchment is dominated by differences in soil type, landscape position, and rainfall input, was proposed for hypothesis testing. To test the conceptual model, the classification results were combined with spatial and event-based data to understand and identify controlling factors. Spatial parameters consisted of hydrological, topographical, and soil physical and chemical parameters. Temporal factors included precipitation characteristics and antecedent soil moisture conditions. The conceptual model as proposed could only be partly confirmed. Event-based occurrence of preferential flow was highly affected by precipitation amount, with a nearly catchment-wide preferential response during large storm events. During intermediate events, preferential flow was controlled by small-scale heterogeneity, instead of showing catchment-wide patterns. The effect of antecedent catchment wetness on the occurrence of preferential flow was generally less profound, although a clear negative relationship was found for precipitation events with more than 25 mm. It was found that spatial occurrence of preferential flow was however governed by small-scale soil and biological features and local processes, and showed no obvious relationship with any of the selected spatial parameters. Overall, the results demonstrate that sensor response time analysis can offer innovative insights into the spatial–temporal interrelationship of preferential flow occurrence.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Huisman, J. A.
|0 P:(DE-Juel1)129472
|b 1
700 1 _ |a Bogena, Heye
|0 P:(DE-Juel1)129440
|b 2
700 1 _ |a Lin, H. S.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Vereecken, H.
|0 P:(DE-Juel1)129549
|b 4
773 _ _ |a 10.1016/j.jhydrol.2015.12.050
|g Vol. 534, p. 139 - 149
|0 PERI:(DE-600)1473173-3
|p 139 - 149
|t Journal of hydrology
|v 534
|y 2016
|x 0022-1694
856 4 _ |u https://juser.fz-juelich.de/record/820893/files/1-s2.0-S0022169415009981-main-1.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/820893/files/1-s2.0-S0022169415009981-main-1.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/820893/files/1-s2.0-S0022169415009981-main-1.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/820893/files/1-s2.0-S0022169415009981-main-1.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/820893/files/1-s2.0-S0022169415009981-main-1.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/820893/files/1-s2.0-S0022169415009981-main-1.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:820893
|p OpenAPC
|p VDB
|p VDB:Earth_Environment
|p openCost
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)157744
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129472
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129440
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129549
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J HYDROL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21