000820895 001__ 820895
000820895 005__ 20210129224641.0
000820895 0247_ $$2doi$$a10.1111/ejss.12359
000820895 0247_ $$2ISSN$$a0022-4588
000820895 0247_ $$2ISSN$$a1351-0754
000820895 0247_ $$2ISSN$$a1365-2389
000820895 0247_ $$2Handle$$a2128/12784
000820895 0247_ $$2WOS$$aWOS:000384745900007
000820895 037__ $$aFZJ-2016-06159
000820895 082__ $$a630
000820895 1001_ $$0P:(DE-HGF)0$$aGregory, A. S.$$b0$$eCorresponding author
000820895 245__ $$aLong-term management changes topsoil and subsoil organic carbon and nitrogen dynamics in a temperate agricultural system
000820895 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2016
000820895 3367_ $$2DRIVER$$aarticle
000820895 3367_ $$2DataCite$$aOutput Types/Journal article
000820895 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1479132079_4504
000820895 3367_ $$2BibTeX$$aARTICLE
000820895 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000820895 3367_ $$00$$2EndNote$$aJournal Article
000820895 520__ $$aSoil organic carbon (SOC) and nitrogen (N) contents are controlled partly by plant inputs that can be manipulated in agricultural systems. Although SOC and N pools occur mainly in the topsoil (upper 0.30 m), there are often substantial pools in the subsoil that are commonly assumed to be stable. We tested the hypothesis that contrasting long-term management systems change the dynamics of SOC and N in the topsoil and subsoil (to 0.75 m) under temperate conditions. We used an established field experiment in the UK where control grassland was changed to arable (59 years before) and bare fallow (49 years before) systems. Losses of SOC and N were 65 and 61% under arable and 78 and 74% under fallow, respectively, in the upper 0.15 m when compared with the grass land soil, whereas at 0.3–0.6-m depth losses under arable and fallow were 41 and 22% and 52 and 35%, respectively. The stable isotopes 13C and 15N showed the effects of different treatments. Concentrations of long-chain n-alkanes C27, C29 and C31 were greater in soil under grass than under arable and fallow. The dynamics of SOC and N changed in both topsoil and subsoil on a decadal time-scale because of changes in the balance between inputs and turnover in perennial and annual systems. Isotopic and geochemical analyses suggested that fresh inputs and decomposition processes occur in the subsoil. There is a need to monitor and predict long-term changes in soil properties in the whole soil profile if soil is to be managed sustainably.
000820895 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000820895 588__ $$aDataset connected to CrossRef
000820895 7001_ $$0P:(DE-HGF)0$$aDungait, J. A. J.$$b1
000820895 7001_ $$0P:(DE-HGF)0$$aWatts, C. W.$$b2
000820895 7001_ $$0P:(DE-Juel1)145865$$aBol, R.$$b3
000820895 7001_ $$0P:(DE-HGF)0$$aDixon, E. R.$$b4
000820895 7001_ $$0P:(DE-HGF)0$$aWhite, R. P.$$b5
000820895 7001_ $$0P:(DE-HGF)0$$aWhitmore, A. P.$$b6
000820895 773__ $$0PERI:(DE-600)2020243-X$$a10.1111/ejss.12359$$gVol. 67, no. 4, p. 421 - 430$$n4$$p421 - 430$$tEuropean journal of soil science$$v67$$x1351-0754$$y2016
000820895 8564_ $$uhttps://juser.fz-juelich.de/record/820895/files/Gregory_et_al-2016-European_Journal_of_Soil_Science.pdf$$yOpenAccess
000820895 8564_ $$uhttps://juser.fz-juelich.de/record/820895/files/Gregory_et_al-2016-European_Journal_of_Soil_Science.gif?subformat=icon$$xicon$$yOpenAccess
000820895 8564_ $$uhttps://juser.fz-juelich.de/record/820895/files/Gregory_et_al-2016-European_Journal_of_Soil_Science.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000820895 8564_ $$uhttps://juser.fz-juelich.de/record/820895/files/Gregory_et_al-2016-European_Journal_of_Soil_Science.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000820895 8564_ $$uhttps://juser.fz-juelich.de/record/820895/files/Gregory_et_al-2016-European_Journal_of_Soil_Science.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000820895 8564_ $$uhttps://juser.fz-juelich.de/record/820895/files/Gregory_et_al-2016-European_Journal_of_Soil_Science.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000820895 909CO $$ooai:juser.fz-juelich.de:820895$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000820895 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145865$$aForschungszentrum Jülich$$b3$$kFZJ
000820895 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000820895 9141_ $$y2016
000820895 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000820895 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000820895 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000820895 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000820895 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR J SOIL SCI : 2015
000820895 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000820895 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000820895 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000820895 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000820895 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000820895 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000820895 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000820895 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000820895 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000820895 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000820895 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000820895 980__ $$ajournal
000820895 980__ $$aVDB
000820895 980__ $$aUNRESTRICTED
000820895 980__ $$aI:(DE-Juel1)IBG-3-20101118
000820895 9801_ $$aFullTexts