001     820895
005     20210129224641.0
024 7 _ |a 10.1111/ejss.12359
|2 doi
024 7 _ |a 0022-4588
|2 ISSN
024 7 _ |a 1351-0754
|2 ISSN
024 7 _ |a 1365-2389
|2 ISSN
024 7 _ |a 2128/12784
|2 Handle
024 7 _ |a WOS:000384745900007
|2 WOS
037 _ _ |a FZJ-2016-06159
082 _ _ |a 630
100 1 _ |a Gregory, A. S.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Long-term management changes topsoil and subsoil organic carbon and nitrogen dynamics in a temperate agricultural system
260 _ _ |a Oxford [u.a.]
|c 2016
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1479132079_4504
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Soil organic carbon (SOC) and nitrogen (N) contents are controlled partly by plant inputs that can be manipulated in agricultural systems. Although SOC and N pools occur mainly in the topsoil (upper 0.30 m), there are often substantial pools in the subsoil that are commonly assumed to be stable. We tested the hypothesis that contrasting long-term management systems change the dynamics of SOC and N in the topsoil and subsoil (to 0.75 m) under temperate conditions. We used an established field experiment in the UK where control grassland was changed to arable (59 years before) and bare fallow (49 years before) systems. Losses of SOC and N were 65 and 61% under arable and 78 and 74% under fallow, respectively, in the upper 0.15 m when compared with the grass land soil, whereas at 0.3–0.6-m depth losses under arable and fallow were 41 and 22% and 52 and 35%, respectively. The stable isotopes 13C and 15N showed the effects of different treatments. Concentrations of long-chain n-alkanes C27, C29 and C31 were greater in soil under grass than under arable and fallow. The dynamics of SOC and N changed in both topsoil and subsoil on a decadal time-scale because of changes in the balance between inputs and turnover in perennial and annual systems. Isotopic and geochemical analyses suggested that fresh inputs and decomposition processes occur in the subsoil. There is a need to monitor and predict long-term changes in soil properties in the whole soil profile if soil is to be managed sustainably.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Dungait, J. A. J.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Watts, C. W.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bol, R.
|0 P:(DE-Juel1)145865
|b 3
700 1 _ |a Dixon, E. R.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a White, R. P.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Whitmore, A. P.
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1111/ejss.12359
|g Vol. 67, no. 4, p. 421 - 430
|0 PERI:(DE-600)2020243-X
|n 4
|p 421 - 430
|t European journal of soil science
|v 67
|y 2016
|x 1351-0754
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/820895/files/Gregory_et_al-2016-European_Journal_of_Soil_Science.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/820895/files/Gregory_et_al-2016-European_Journal_of_Soil_Science.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/820895/files/Gregory_et_al-2016-European_Journal_of_Soil_Science.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/820895/files/Gregory_et_al-2016-European_Journal_of_Soil_Science.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/820895/files/Gregory_et_al-2016-European_Journal_of_Soil_Science.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/820895/files/Gregory_et_al-2016-European_Journal_of_Soil_Science.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:820895
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145865
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR J SOIL SCI : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21