000820901 001__ 820901
000820901 005__ 20220930130109.0
000820901 0247_ $$2doi$$a10.1016/j.geoderma.2015.12.013
000820901 0247_ $$2ISSN$$a0016-7061
000820901 0247_ $$2ISSN$$a1872-6259
000820901 0247_ $$2WOS$$aWOS:000369473100024
000820901 0247_ $$2altmetric$$aaltmetric:5011121
000820901 037__ $$aFZJ-2016-06165
000820901 082__ $$a550
000820901 1001_ $$0P:(DE-HGF)0$$aRudolph, S.$$b0$$eCorresponding author
000820901 245__ $$aSoil apparent conductivity measurements for planning and analysis of agricultural experiments: A case study from Western-Thailand
000820901 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2016
000820901 3367_ $$2DRIVER$$aarticle
000820901 3367_ $$2DataCite$$aOutput Types/Journal article
000820901 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1479132710_4507
000820901 3367_ $$2BibTeX$$aARTICLE
000820901 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000820901 3367_ $$00$$2EndNote$$aJournal Article
000820901 520__ $$aIn experimental trials, the success or failure of agricultural improvements is commonly evaluated on the agronomic response of crops, using proper experimental designs with sufficient statistical power. Since fine-scale variability of the experimental site can reduce statistical power, efficiency gains in the experimental design can be achieved if this variation is known and used to design blocking, or some proxy variable is used as a covariate. Near-surface geophysical techniques such as electromagnetic induction (EMI), which describes subsurface properties non-invasively by measuring soil apparent conductivity (ECa), may be one source of this information. The motivation of our study was to investigate the effectiveness of EMI-derived ECa measurements for planning and analysis of agricultural experiments. ECa and plant height measurements (the response variable) were taken from an agroforestry experiment in Western Thailand, and their variability was quantified to simulate multiple realizations of ECa and the residuals of the response variable from treatment means. These were combined to produce simulated data from different experimental designs and treatment effects. The simulated data were then used to evaluate the statistical power by detecting three orthogonal contrasts among the treatments in the original experiment. We considered three experimental designs, a simple random design (SR), a complete randomized block design (CRB), and a complete randomized block design with spatially adjusted blocks on plot means of ECa (CRBECa). Using analysis of variance (ANOVA), the smallest effect sizes could be detected with the CRBECa design, which indicates that ECa measurements could be used in the planning phase of an experiment to achieve efficiencies by improved blocking. In contrast, analysis of covariance (ANCOVA) demonstrated that substantial power improvements could be gained when ECa was considered as a covariate in the analysis. We therefore recommend that ECa measurements should be used to characterize subsurface variability of experimental sites and to support the statistical analysis of agricultural experiments.
000820901 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000820901 588__ $$aDataset connected to CrossRef
000820901 7001_ $$0P:(DE-HGF)0$$aWongleecharoen, C.$$b1
000820901 7001_ $$0P:(DE-HGF)0$$aLark, R. M.$$b2
000820901 7001_ $$0P:(DE-HGF)0$$aMarchant, B. P.$$b3
000820901 7001_ $$0P:(DE-Juel1)129457$$aGarré, S.$$b4
000820901 7001_ $$0P:(DE-Juel1)129469$$aHerbst, M.$$b5
000820901 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b6
000820901 7001_ $$0P:(DE-Juel1)129553$$aWeihermüller, L.$$b7
000820901 773__ $$0PERI:(DE-600)2001729-7$$a10.1016/j.geoderma.2015.12.013$$gVol. 267, p. 220 - 229$$p220 - 229$$tGeoderma$$v267$$x0016-7061$$y2016
000820901 8564_ $$uhttps://juser.fz-juelich.de/record/820901/files/1-s2.0-S0016706115301646-main.pdf$$yRestricted
000820901 8564_ $$uhttps://juser.fz-juelich.de/record/820901/files/1-s2.0-S0016706115301646-main.gif?subformat=icon$$xicon$$yRestricted
000820901 8564_ $$uhttps://juser.fz-juelich.de/record/820901/files/1-s2.0-S0016706115301646-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000820901 8564_ $$uhttps://juser.fz-juelich.de/record/820901/files/1-s2.0-S0016706115301646-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000820901 8564_ $$uhttps://juser.fz-juelich.de/record/820901/files/1-s2.0-S0016706115301646-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000820901 8564_ $$uhttps://juser.fz-juelich.de/record/820901/files/1-s2.0-S0016706115301646-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000820901 8767_ $$92015-12-31$$d2016-01-05$$eColour charges$$jZahlung erfolgt$$pGEODER12187
000820901 909CO $$ooai:juser.fz-juelich.de:820901$$pVDB:Earth_Environment$$pVDB$$pOpenAPC$$popenCost
000820901 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
000820901 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129457$$aForschungszentrum Jülich$$b4$$kFZJ
000820901 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129469$$aForschungszentrum Jülich$$b5$$kFZJ
000820901 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b6$$kFZJ
000820901 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129553$$aForschungszentrum Jülich$$b7$$kFZJ
000820901 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000820901 9141_ $$y2016
000820901 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000820901 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000820901 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000820901 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000820901 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEODERMA : 2015
000820901 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000820901 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000820901 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000820901 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000820901 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000820901 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000820901 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000820901 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000820901 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000820901 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000820901 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000820901 980__ $$ajournal
000820901 980__ $$aVDB
000820901 980__ $$aUNRESTRICTED
000820901 980__ $$aI:(DE-Juel1)IBG-3-20101118
000820901 980__ $$aAPC