000820914 001__ 820914
000820914 005__ 20210129224648.0
000820914 0247_ $$2doi$$a10.5194/cp-12-1165-2016
000820914 0247_ $$2ISSN$$a1814-9324
000820914 0247_ $$2ISSN$$a1814-9332
000820914 0247_ $$2Handle$$a2128/12788
000820914 0247_ $$2WOS$$aWOS:000378320700005
000820914 037__ $$aFZJ-2016-06178
000820914 082__ $$a550
000820914 1001_ $$0P:(DE-HGF)0$$aSchittek, Karsten$$b0$$eCorresponding author
000820914 245__ $$aA high-altitude peatland record of environmental changes in the NW Argentine Andes (24 ° S) over the last 2100 years
000820914 260__ $$aKatlenburg-Lindau$$bCopernicus Ges.$$c2016
000820914 3367_ $$2DRIVER$$aarticle
000820914 3367_ $$2DataCite$$aOutput Types/Journal article
000820914 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1479135720_4508
000820914 3367_ $$2BibTeX$$aARTICLE
000820914 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000820914 3367_ $$00$$2EndNote$$aJournal Article
000820914 520__ $$aHigh-altitude cushion peatlands are versatile archives for high-resolution palaeoenvironmental studies, due to their high accumulation rates, range of proxies, and sensitivity to climatic and/or human-induced changes. Especially within the Central Andes, the knowledge about climate conditions during the Holocene is limited. In this study, we present the environmental and climatic history for the last 2100 years of Cerro Tuzgle peatland (CTP), located in the dry Puna of NW Argentina, based on a multi-proxy approach. X-ray fluorescence (XRF), stable isotope and element content analyses (δ13C, δ15N, TN and TOC) were conducted to analyse the inorganic geochemistry throughout the sequence, revealing changes in the peatlands' past redox conditions. Pollen assemblages give an insight into substantial environmental changes on a regional scale. The palaeoclimate varied significantly during the last 2100 years. The results reflect prominent late Holocene climate anomalies and provide evidence that in situ moisture changes were coupled to the migration of the Intertropical Convergence Zone (ITCZ). A period of sustained dry conditions prevailed from around 150 BC to around AD 150. A more humid phase dominated between AD 200 and AD 550. Afterwards, the climate was characterised by changes between drier and wetter conditions, with droughts at around AD 650–800 and AD  1000–1100. Volcanic forcing at the beginning of the 19th century (1815 Tambora eruption) seems to have had an impact on climatic settings in the Central Andes. In the past, the peatland recovered from climatic perturbations. Today, CTP is heavily degraded by human interventions, and the peat deposit is becoming increasingly susceptible to erosion and incision.
000820914 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000820914 588__ $$aDataset connected to CrossRef
000820914 7001_ $$0P:(DE-Juel1)167587$$akock, sebastian$$b1
000820914 7001_ $$0P:(DE-Juel1)129567$$aLücke, Andreas$$b2
000820914 7001_ $$0P:(DE-HGF)0$$aHense, Jonathan$$b3
000820914 7001_ $$0P:(DE-HGF)0$$aOhlendorf, Christian$$b4
000820914 7001_ $$0P:(DE-HGF)0$$aKulemeyer, Julio J.$$b5
000820914 7001_ $$0P:(DE-HGF)0$$aLupo, Liliana C.$$b6
000820914 7001_ $$0P:(DE-HGF)0$$aSchäbitz, Frank$$b7
000820914 773__ $$0PERI:(DE-600)2217985-9$$a10.5194/cp-12-1165-2016$$gVol. 12, no. 5, p. 1165 - 1180$$n5$$p1165 - 1180$$tClimate of the past$$v12$$x1814-9332$$y2016
000820914 8564_ $$uhttps://juser.fz-juelich.de/record/820914/files/cp-12-1165-2016-1.pdf$$yOpenAccess
000820914 8564_ $$uhttps://juser.fz-juelich.de/record/820914/files/cp-12-1165-2016-1.gif?subformat=icon$$xicon$$yOpenAccess
000820914 8564_ $$uhttps://juser.fz-juelich.de/record/820914/files/cp-12-1165-2016-1.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000820914 8564_ $$uhttps://juser.fz-juelich.de/record/820914/files/cp-12-1165-2016-1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000820914 8564_ $$uhttps://juser.fz-juelich.de/record/820914/files/cp-12-1165-2016-1.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000820914 8564_ $$uhttps://juser.fz-juelich.de/record/820914/files/cp-12-1165-2016-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000820914 909CO $$ooai:juser.fz-juelich.de:820914$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000820914 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167587$$aForschungszentrum Jülich$$b1$$kFZJ
000820914 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129567$$aForschungszentrum Jülich$$b2$$kFZJ
000820914 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000820914 9141_ $$y2016
000820914 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000820914 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000820914 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCLIM PAST : 2015
000820914 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000820914 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000820914 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000820914 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000820914 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000820914 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000820914 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000820914 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000820914 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000820914 980__ $$ajournal
000820914 980__ $$aVDB
000820914 980__ $$aUNRESTRICTED
000820914 980__ $$aI:(DE-Juel1)IBG-3-20101118
000820914 9801_ $$aFullTexts