001     820915
005     20210129224649.0
024 7 _ |a 10.1016/j.jhydrol.2016.05.050
|2 doi
024 7 _ |a 0022-1694
|2 ISSN
024 7 _ |a 1879-2707
|2 ISSN
024 7 _ |a WOS:000378953700047
|2 WOS
024 7 _ |a altmetric:20566554
|2 altmetric
037 _ _ |a FZJ-2016-06179
082 _ _ |a 690
100 1 _ |a Han, Xujun
|0 P:(DE-Juel1)144738
|b 0
|e Corresponding author
245 _ _ |a Simultaneous soil moisture and properties estimation for a drip irrigated field by assimilating cosmic-ray neutron intensity
260 _ _ |a Amsterdam [u.a.]
|c 2016
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1479135992_4507
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Neutron intensity measured by the aboveground cosmic-ray neutron intensity probe (CRP) allows estimating soil moisture content at the field scale. In this work, synthetic neutron intensities were used to remove the bias of simulated soil moisture content or update soil hydraulic properties (together with soil moisture) in the Community Land Model (CLM) using the Local Ensemble Transform Kalman Filter. The cosmic-ray forward model COSMIC was used as the non-linear measurement operator which maps between neutron intensity and soil moisture. The novel aspect of this work is that synthetically measured neutron intensity was used for real time updating of soil states and soil properties (or soil moisture bias) and posterior use for the real time scheduling of irrigation (data assimilation based real-time control approach). Uncertainty of model forcing and soil properties (sand fraction, clay fraction and organic matter density) were considered in the ensemble predictions of the soil moisture profiles. Horizontal and vertical weighting of soil moisture was introduced in the data assimilation in order to handle the scale mismatch between the cosmic-ray footprint and the CLM grid cel
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hendricks-Franssen, Harrie-Jan
|0 P:(DE-Juel1)138662
|b 1
700 1 _ |a Jiménez Bello, Miguel Ángel
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Rosolem, Rafael
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bogena, Heye
|0 P:(DE-Juel1)129440
|b 4
700 1 _ |a Alzamora, Fernando Martínez
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Chanzy, André
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 7
773 _ _ |a 10.1016/j.jhydrol.2016.05.050
|g Vol. 539, p. 611 - 624
|0 PERI:(DE-600)1473173-3
|p 611 - 624
|t Journal of hydrology
|v 539
|y 2016
|x 0022-1694
856 4 _ |u https://juser.fz-juelich.de/record/820915/files/1-s2.0-S0022169416303171-main-1.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/820915/files/1-s2.0-S0022169416303171-main-1.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/820915/files/1-s2.0-S0022169416303171-main-1.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/820915/files/1-s2.0-S0022169416303171-main-1.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/820915/files/1-s2.0-S0022169416303171-main-1.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/820915/files/1-s2.0-S0022169416303171-main-1.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:820915
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)144738
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)138662
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129440
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129549
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J HYDROL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21