000820924 001__ 820924
000820924 005__ 20230310131357.0
000820924 0247_ $$2doi$$a10.1016/j.jhydrol.2016.09.037
000820924 0247_ $$2ISSN$$a0022-1694
000820924 0247_ $$2ISSN$$a1879-2707
000820924 0247_ $$2WOS$$aWOS:000388248400047
000820924 0247_ $$2altmetric$$aaltmetric:12232503
000820924 037__ $$aFZJ-2016-06188
000820924 082__ $$a690
000820924 1001_ $$0P:(DE-Juel1)157744$$aWiekenkamp, I.$$b0$$eCorresponding author
000820924 245__ $$aChanges in measured spatiotemporal patterns of hydrological response after partial deforestation in a headwater catchment
000820924 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2016
000820924 3367_ $$2DRIVER$$aarticle
000820924 3367_ $$2DataCite$$aOutput Types/Journal article
000820924 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1484813622_357
000820924 3367_ $$2BibTeX$$aARTICLE
000820924 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000820924 3367_ $$00$$2EndNote$$aJournal Article
000820924 520__ $$aAlthough the hydrological effects of land use change have been studied extensively, only few datasets are available to accurately describe, model, and predict detailed changes in spatiotemporal patterns of hydrological fluxes and states due to land use change. The Wüstebach catchment within the TERENO (TERrestrial Environmental Observatories) network in Germany provides a unique monitoring setup to measure the major components of the water balance (evapotranspiration, discharge, precipitation) and the spatiotemporal distribution of soil moisture before and after a partial deforestation. Here, we present five years of measured hydrological data, including all major water budget components three years before and two years after a partial deforestation. A data-driven approach was used to understand changes and related feedback mechanisms in spatiotemporal hydrological response patterns. As expected from earlier studies, the partial deforestation caused a decrease in evapotranspiration and an increase in discharge. A closer look at the high resolution datasets revealed new insights in the intra-annual variability and relationship between the water balance components. The overall decrease in evapotranspiration caused a large increase in soil water storage in the deforested region, especially during the summer period, which in turn caused an increase in the frequency of high discharge in the same period. Although the evapotranspiration in the forested region was larger on average, the deforested region showed a higher evapotranspiration during part of the summer period. This could be related to wetter conditions in the deforested area, accompanied with the emergence of grass vegetation. At the same time, wetter soil moisture conditions in the deforested area increased the spatial variance of soil moisture in the summer and therewith altered the relationship between spatial mean and variance. Altogether, this study illustrates that detailed spatiotemporal monitoring can provide new insights into the hydrological effects of partial deforestation.
000820924 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000820924 536__ $$0G:(GEPRIS)15232683$$aDFG project 15232683 - TRR 32: Muster und Strukturen in Boden-Pflanzen-Atmosphären-Systemen: Erfassung, Modellierung und Datenassimilation (15232683)$$c15232683$$x1
000820924 536__ $$0G:(DE-Juel1)BMBF-01LN1313A$$aIDAS-GHG - Instrumental and Data-driven Approaches to Source-Partitioning of Greenhouse Gas Fluxes: Comparison, Combination, Advancement (BMBF-01LN1313A)$$cBMBF-01LN1313A$$fNachwuchsgruppen Globaler Wandel 4+1$$x2
000820924 588__ $$aDataset connected to CrossRef
000820924 7001_ $$0P:(DE-Juel1)129472$$aHuisman, J. A.$$b1
000820924 7001_ $$0P:(DE-Juel1)129440$$aBogena, Heye$$b2
000820924 7001_ $$0P:(DE-Juel1)129461$$aGraf, Alexander$$b3
000820924 7001_ $$0P:(DE-HGF)0$$aLin, H. S.$$b4
000820924 7001_ $$0P:(DE-HGF)0$$aDrüe, C.$$b5
000820924 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b6
000820924 773__ $$0PERI:(DE-600)1473173-3$$a10.1016/j.jhydrol.2016.09.037$$gVol. 542, p. 648 - 661$$p648 - 661$$tJournal of hydrology$$v542$$x0022-1694$$y2016
000820924 8564_ $$uhttps://juser.fz-juelich.de/record/820924/files/1-s2.0-S0022169416305911-main-1.pdf$$yRestricted
000820924 8564_ $$uhttps://juser.fz-juelich.de/record/820924/files/1-s2.0-S0022169416305911-main-1.gif?subformat=icon$$xicon$$yRestricted
000820924 8564_ $$uhttps://juser.fz-juelich.de/record/820924/files/1-s2.0-S0022169416305911-main-1.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000820924 8564_ $$uhttps://juser.fz-juelich.de/record/820924/files/1-s2.0-S0022169416305911-main-1.jpg?subformat=icon-180$$xicon-180$$yRestricted
000820924 8564_ $$uhttps://juser.fz-juelich.de/record/820924/files/1-s2.0-S0022169416305911-main-1.jpg?subformat=icon-640$$xicon-640$$yRestricted
000820924 8564_ $$uhttps://juser.fz-juelich.de/record/820924/files/1-s2.0-S0022169416305911-main-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000820924 8767_ $$92016-09-20$$d2016-10-27$$eColour charges$$jZahlung erfolgt$$zehem. MA IBG-3
000820924 909CO $$ooai:juser.fz-juelich.de:820924$$popenCost$$pVDB:Earth_Environment$$pVDB$$pOpenAPC
000820924 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157744$$aForschungszentrum Jülich$$b0$$kFZJ
000820924 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129472$$aForschungszentrum Jülich$$b1$$kFZJ
000820924 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129440$$aForschungszentrum Jülich$$b2$$kFZJ
000820924 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129461$$aForschungszentrum Jülich$$b3$$kFZJ
000820924 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b6$$kFZJ
000820924 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000820924 9141_ $$y2016
000820924 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000820924 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000820924 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000820924 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000820924 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ HYDROL : 2015
000820924 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000820924 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000820924 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000820924 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000820924 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000820924 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000820924 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000820924 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000820924 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000820924 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000820924 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000820924 980__ $$ajournal
000820924 980__ $$aVDB
000820924 980__ $$aI:(DE-Juel1)IBG-3-20101118
000820924 980__ $$aUNRESTRICTED
000820924 980__ $$aAPC