000820925 001__ 820925
000820925 005__ 20210129224651.0
000820925 0247_ $$2doi$$a10.1016/j.epsl.2016.01.017
000820925 0247_ $$2ISSN$$a0012-821X
000820925 0247_ $$2ISSN$$a1385-013X
000820925 0247_ $$2WOS$$aWOS:000371843700015
000820925 0247_ $$2altmetric$$aaltmetric:5636845
000820925 037__ $$aFZJ-2016-06189
000820925 082__ $$a550
000820925 1001_ $$00000-0001-5699-6714$$aCampforts, Benjamin$$b0$$eCorresponding author
000820925 245__ $$aSimulating the mobility of meteoric 10Be in the landscape through a coupled soil-hillslope model (Be2D)
000820925 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2016
000820925 3367_ $$2DRIVER$$aarticle
000820925 3367_ $$2DataCite$$aOutput Types/Journal article
000820925 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1479137157_4499
000820925 3367_ $$2BibTeX$$aARTICLE
000820925 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000820925 3367_ $$00$$2EndNote$$aJournal Article
000820925 520__ $$aMeteoric 10Be allows for the quantification of vertical and lateral soil fluxes over long time scales (103–105 yr103–105 yr). However, the mobility of meteoric 10Be in the soil system makes a translation of meteoric 10Be inventories into erosion and deposition rates complex. Here, we present a spatially explicit 2D model simulating the behaviour of meteoric 10Be on a hillslope. The model consists of two parts. The first component deals with advective and diffusive mobility of meteoric 10Be within the soil profile, and the second component describes lateral soil and meteoric 10Be fluxes over the hillslope. Soil depth is calculated dynamically, accounting for soil production through weathering as well as downslope fluxes of soil due to creep, water and tillage erosion. Synthetic model simulations show that meteoric 10Be inventories can be related to erosion and deposition across a wide range of geomorphological and pedological settings. Our results also show that meteoric 10Be can be used as a tracer to detect human impact on soil fluxes for soils with a high affinity for meteoric 10Be. However, the quantification of vertical mobility is essential for a correct interpretation of the observed variations in meteoric 10Be profiles and inventories. Application of the Be2D model to natural conditions using data sets from the Southern Piedmont (Bacon et al., 2012) and Appalachian Mountains (Jungers et al., 2009 and West et al., 2013) allows to reliably constrain parameter values. Good agreement between simulated and observed meteoric 10Be concentrations and inventories is obtained with realistic parameter values. Furthermore, our results provide detailed insights into the processes redistributing meteoric 10Be at the soil-hillslope scale.
000820925 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000820925 588__ $$aDataset connected to CrossRef
000820925 7001_ $$0P:(DE-HGF)0$$aVanacker, Veerle$$b1
000820925 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, Jan$$b2
000820925 7001_ $$0P:(DE-HGF)0$$aBaken, Stijn$$b3
000820925 7001_ $$0P:(DE-HGF)0$$aSmolders, Erik$$b4
000820925 7001_ $$0P:(DE-HGF)0$$aGovers, Gerard$$b5
000820925 773__ $$0PERI:(DE-600)1466659-5$$a10.1016/j.epsl.2016.01.017$$gVol. 439, p. 143 - 157$$p143 - 157$$tEarth and planetary science letters$$v439$$x0012-821X$$y2016
000820925 8564_ $$uhttps://juser.fz-juelich.de/record/820925/files/1-s2.0-S0012821X16000339-main.pdf$$yRestricted
000820925 8564_ $$uhttps://juser.fz-juelich.de/record/820925/files/1-s2.0-S0012821X16000339-main.gif?subformat=icon$$xicon$$yRestricted
000820925 8564_ $$uhttps://juser.fz-juelich.de/record/820925/files/1-s2.0-S0012821X16000339-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000820925 8564_ $$uhttps://juser.fz-juelich.de/record/820925/files/1-s2.0-S0012821X16000339-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000820925 8564_ $$uhttps://juser.fz-juelich.de/record/820925/files/1-s2.0-S0012821X16000339-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000820925 8564_ $$uhttps://juser.fz-juelich.de/record/820925/files/1-s2.0-S0012821X16000339-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000820925 909CO $$ooai:juser.fz-juelich.de:820925$$pVDB:Earth_Environment$$pVDB
000820925 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129548$$aForschungszentrum Jülich$$b2$$kFZJ
000820925 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000820925 9141_ $$y2016
000820925 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000820925 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000820925 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000820925 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000820925 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEARTH PLANET SC LETT : 2015
000820925 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000820925 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000820925 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000820925 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000820925 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000820925 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000820925 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000820925 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000820925 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000820925 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000820925 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000820925 980__ $$ajournal
000820925 980__ $$aVDB
000820925 980__ $$aUNRESTRICTED
000820925 980__ $$aI:(DE-Juel1)IBG-3-20101118