001     820925
005     20210129224651.0
024 7 _ |a 10.1016/j.epsl.2016.01.017
|2 doi
024 7 _ |a 0012-821X
|2 ISSN
024 7 _ |a 1385-013X
|2 ISSN
024 7 _ |a WOS:000371843700015
|2 WOS
024 7 _ |a altmetric:5636845
|2 altmetric
037 _ _ |a FZJ-2016-06189
082 _ _ |a 550
100 1 _ |a Campforts, Benjamin
|0 0000-0001-5699-6714
|b 0
|e Corresponding author
245 _ _ |a Simulating the mobility of meteoric 10Be in the landscape through a coupled soil-hillslope model (Be2D)
260 _ _ |a Amsterdam [u.a.]
|c 2016
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1479137157_4499
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Meteoric 10Be allows for the quantification of vertical and lateral soil fluxes over long time scales (103–105 yr103–105 yr). However, the mobility of meteoric 10Be in the soil system makes a translation of meteoric 10Be inventories into erosion and deposition rates complex. Here, we present a spatially explicit 2D model simulating the behaviour of meteoric 10Be on a hillslope. The model consists of two parts. The first component deals with advective and diffusive mobility of meteoric 10Be within the soil profile, and the second component describes lateral soil and meteoric 10Be fluxes over the hillslope. Soil depth is calculated dynamically, accounting for soil production through weathering as well as downslope fluxes of soil due to creep, water and tillage erosion. Synthetic model simulations show that meteoric 10Be inventories can be related to erosion and deposition across a wide range of geomorphological and pedological settings. Our results also show that meteoric 10Be can be used as a tracer to detect human impact on soil fluxes for soils with a high affinity for meteoric 10Be. However, the quantification of vertical mobility is essential for a correct interpretation of the observed variations in meteoric 10Be profiles and inventories. Application of the Be2D model to natural conditions using data sets from the Southern Piedmont (Bacon et al., 2012) and Appalachian Mountains (Jungers et al., 2009 and West et al., 2013) allows to reliably constrain parameter values. Good agreement between simulated and observed meteoric 10Be concentrations and inventories is obtained with realistic parameter values. Furthermore, our results provide detailed insights into the processes redistributing meteoric 10Be at the soil-hillslope scale.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Vanacker, Veerle
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Vanderborght, Jan
|0 P:(DE-Juel1)129548
|b 2
700 1 _ |a Baken, Stijn
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Smolders, Erik
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Govers, Gerard
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1016/j.epsl.2016.01.017
|g Vol. 439, p. 143 - 157
|0 PERI:(DE-600)1466659-5
|p 143 - 157
|t Earth and planetary science letters
|v 439
|y 2016
|x 0012-821X
856 4 _ |u https://juser.fz-juelich.de/record/820925/files/1-s2.0-S0012821X16000339-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/820925/files/1-s2.0-S0012821X16000339-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/820925/files/1-s2.0-S0012821X16000339-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/820925/files/1-s2.0-S0012821X16000339-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/820925/files/1-s2.0-S0012821X16000339-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/820925/files/1-s2.0-S0012821X16000339-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:820925
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129548
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EARTH PLANET SC LETT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21