001     820926
005     20210129224652.0
024 7 _ |a 10.1371/journal.pone.0151782
|2 doi
024 7 _ |a 2128/12795
|2 Handle
024 7 _ |a WOS:000373608000007
|2 WOS
024 7 _ |a altmetric:6557332
|2 altmetric
024 7 _ |a pmid:27055028
|2 pmid
037 _ _ |a FZJ-2016-06190
082 _ _ |a 500
100 1 _ |a Hoffmann, Holger
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations
260 _ _ |a Lawrence, Kan.
|c 2016
|b PLoS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1479137272_4504
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Zhao, Gang
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Asseng, Senthold
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bindi, Marco
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Biernath, Christian
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Constantin, Julie
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Coucheney, Elsa
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Dechow, Rene
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Doro, Luca
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Eckersten, Henrik
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Gaiser, Thomas
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Grosz, Balázs
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Heinlein, Florian
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Kassie, Belay T.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Kersebaum, Kurt-Christian
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Klein, Christian
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Kuhnert, Matthias
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Lewan, Elisabet
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Moriondo, Marco
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Nendel, Claas
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Priesack, Eckart
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Raynal, Helene
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Roggero, Pier P.
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Rötter, Reimund P.
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Siebert, Stefan
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Specka, Xenia
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Tao, Fulu
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Teixeira, Edmar
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Trombi, Giacomo
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Wallach, Daniel
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Weihermüller, Lutz
|0 P:(DE-Juel1)129553
|b 30
700 1 _ |a Yeluripati, Jagadeesh
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Ewert, Frank
|0 P:(DE-HGF)0
|b 32
773 _ _ |a 10.1371/journal.pone.0151782
|g Vol. 11, no. 4, p. e0151782 -
|0 PERI:(DE-600)2267670-3
|n 4
|p e0151782 -
|t PLoS one
|v 11
|y 2016
|x 1932-6203
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/820926/files/journal.pone.0151782.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/820926/files/journal.pone.0151782.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/820926/files/journal.pone.0151782.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/820926/files/journal.pone.0151782.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/820926/files/journal.pone.0151782.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/820926/files/journal.pone.0151782.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:820926
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 30
|6 P:(DE-Juel1)129553
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLOS ONE : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21