000820927 001__ 820927
000820927 005__ 20210129224652.0
000820927 0247_ $$2doi$$a10.1002/2015WR018236
000820927 0247_ $$2ISSN$$a0043-1397
000820927 0247_ $$2ISSN$$a0148-0227
000820927 0247_ $$2ISSN$$a1944-7973
000820927 0247_ $$2WOS$$aWOS:000383684400042
000820927 0247_ $$2Handle$$a2128/16112
000820927 037__ $$aFZJ-2016-06191
000820927 082__ $$a550
000820927 1001_ $$0P:(DE-HGF)0$$aAndreasen, Mie$$b0$$eCorresponding author
000820927 245__ $$aModeling cosmic ray neutron field measurements
000820927 260__ $$a[New York]$$bWiley$$c2016
000820927 3367_ $$2DRIVER$$aarticle
000820927 3367_ $$2DataCite$$aOutput Types/Journal article
000820927 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1512391046_12599
000820927 3367_ $$2BibTeX$$aARTICLE
000820927 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000820927 3367_ $$00$$2EndNote$$aJournal Article
000820927 520__ $$aThe cosmic ray neutron method was developed for intermediate-scale soil moisture detection, but may potentially be used for other hydrological applications. The neutron signal of different hydrogen pools is poorly understood and separating them is difficult based on neutron measurements alone. Including neutron transport modeling may accommodate this shortcoming. However, measured and modeled neutrons are not directly comparable. Neither the scale nor energy ranges are equivalent, and the exact neutron energy sensitivity of the detectors is unknown. Here a methodology to enable comparability of the measured and modeled neutrons is presented. The usual cosmic ray soil moisture detector measures moderated neutrons by means of a proportional counter surrounded by plastic, making it sensitive to epithermal neutrons. However, that configuration allows for some thermal neutrons to be measured. The thermal contribution can be removed by surrounding the plastic with a layer of cadmium, which absorbs neutrons with energies below 0.5 eV. Likewise, cadmium shielding of a bare detector allows for estimating the epithermal contribution. First, the cadmium difference method is used to determine the fraction of thermal and epithermal neutrons measured by the bare and plastic-shielded detectors, respectively. The cadmium difference method results in linear correction models for measurements by the two detectors, and has the greatest impact on the neutron intensity measured by the moderated detector at the ground surface. Next, conversion factors are obtained relating measured and modeled neutron intensities. Finally, the methodology is tested by modeling the neutron profiles at an agricultural field site and satisfactory agreement to measurements is found.
000820927 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000820927 588__ $$aDataset connected to CrossRef
000820927 7001_ $$0P:(DE-HGF)0$$aJensen, Karsten H.$$b1
000820927 7001_ $$0P:(DE-HGF)0$$aZreda, Marek$$b2
000820927 7001_ $$0P:(DE-HGF)0$$aDesilets, Darin$$b3
000820927 7001_ $$0P:(DE-Juel1)129440$$aBogena, Heye$$b4
000820927 7001_ $$0P:(DE-HGF)0$$aLooms, Majken C.$$b5
000820927 773__ $$0PERI:(DE-600)2029553-4$$a10.1002/2015WR018236$$gVol. 52, no. 8, p. 6451 - 6471$$n8$$p6451 - 6471$$tWater resources research$$v52$$x0043-1397$$y2016
000820927 8564_ $$uhttps://juser.fz-juelich.de/record/820927/files/Andreasen_et_al-2016-Water_Resources_Research.pdf$$yOpenAccess
000820927 8564_ $$uhttps://juser.fz-juelich.de/record/820927/files/Andreasen_et_al-2016-Water_Resources_Research.gif?subformat=icon$$xicon$$yOpenAccess
000820927 8564_ $$uhttps://juser.fz-juelich.de/record/820927/files/Andreasen_et_al-2016-Water_Resources_Research.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000820927 8564_ $$uhttps://juser.fz-juelich.de/record/820927/files/Andreasen_et_al-2016-Water_Resources_Research.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000820927 8564_ $$uhttps://juser.fz-juelich.de/record/820927/files/Andreasen_et_al-2016-Water_Resources_Research.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000820927 8564_ $$uhttps://juser.fz-juelich.de/record/820927/files/Andreasen_et_al-2016-Water_Resources_Research.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000820927 909CO $$ooai:juser.fz-juelich.de:820927$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000820927 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000820927 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000820927 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bWATER RESOUR RES : 2015
000820927 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000820927 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000820927 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000820927 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000820927 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000820927 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000820927 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000820927 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000820927 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000820927 9141_ $$y2016
000820927 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129440$$aForschungszentrum Jülich$$b4$$kFZJ
000820927 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000820927 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000820927 980__ $$ajournal
000820927 980__ $$aVDB
000820927 980__ $$aUNRESTRICTED
000820927 980__ $$aI:(DE-Juel1)IBG-3-20101118
000820927 9801_ $$aFullTexts