001     820927
005     20210129224652.0
024 7 _ |2 doi
|a 10.1002/2015WR018236
024 7 _ |2 ISSN
|a 0043-1397
024 7 _ |2 ISSN
|a 0148-0227
024 7 _ |2 ISSN
|a 1944-7973
024 7 _ |2 WOS
|a WOS:000383684400042
024 7 _ |2 Handle
|a 2128/16112
037 _ _ |a FZJ-2016-06191
082 _ _ |a 550
100 1 _ |0 P:(DE-HGF)0
|a Andreasen, Mie
|b 0
|e Corresponding author
245 _ _ |a Modeling cosmic ray neutron field measurements
260 _ _ |a [New York]
|b Wiley
|c 2016
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1512391046_12599
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a The cosmic ray neutron method was developed for intermediate-scale soil moisture detection, but may potentially be used for other hydrological applications. The neutron signal of different hydrogen pools is poorly understood and separating them is difficult based on neutron measurements alone. Including neutron transport modeling may accommodate this shortcoming. However, measured and modeled neutrons are not directly comparable. Neither the scale nor energy ranges are equivalent, and the exact neutron energy sensitivity of the detectors is unknown. Here a methodology to enable comparability of the measured and modeled neutrons is presented. The usual cosmic ray soil moisture detector measures moderated neutrons by means of a proportional counter surrounded by plastic, making it sensitive to epithermal neutrons. However, that configuration allows for some thermal neutrons to be measured. The thermal contribution can be removed by surrounding the plastic with a layer of cadmium, which absorbs neutrons with energies below 0.5 eV. Likewise, cadmium shielding of a bare detector allows for estimating the epithermal contribution. First, the cadmium difference method is used to determine the fraction of thermal and epithermal neutrons measured by the bare and plastic-shielded detectors, respectively. The cadmium difference method results in linear correction models for measurements by the two detectors, and has the greatest impact on the neutron intensity measured by the moderated detector at the ground surface. Next, conversion factors are obtained relating measured and modeled neutron intensities. Finally, the methodology is tested by modeling the neutron profiles at an agricultural field site and satisfactory agreement to measurements is found.
536 _ _ |0 G:(DE-HGF)POF3-255
|a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Jensen, Karsten H.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Zreda, Marek
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Desilets, Darin
|b 3
700 1 _ |0 P:(DE-Juel1)129440
|a Bogena, Heye
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Looms, Majken C.
|b 5
773 _ _ |0 PERI:(DE-600)2029553-4
|a 10.1002/2015WR018236
|g Vol. 52, no. 8, p. 6451 - 6471
|n 8
|p 6451 - 6471
|t Water resources research
|v 52
|x 0043-1397
|y 2016
856 4 _ |u https://juser.fz-juelich.de/record/820927/files/Andreasen_et_al-2016-Water_Resources_Research.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/820927/files/Andreasen_et_al-2016-Water_Resources_Research.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/820927/files/Andreasen_et_al-2016-Water_Resources_Research.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/820927/files/Andreasen_et_al-2016-Water_Resources_Research.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/820927/files/Andreasen_et_al-2016-Water_Resources_Research.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/820927/files/Andreasen_et_al-2016-Water_Resources_Research.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:820927
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129440
|a Forschungszentrum Jülich
|b 4
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-255
|1 G:(DE-HGF)POF3-250
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|l Terrestrische Umwelt
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2016
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b WATER RESOUR RES : 2015
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)1060
|2 StatID
|a DBCoverage
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21