000820929 001__ 820929
000820929 005__ 20210129224654.0
000820929 0247_ $$2doi$$a10.1002/qj.2751
000820929 0247_ $$2ISSN$$a0035-9009
000820929 0247_ $$2ISSN$$a1477-870X
000820929 0247_ $$2Handle$$a2128/12797
000820929 0247_ $$2WOS$$aWOS:000375935600024
000820929 037__ $$aFZJ-2016-06193
000820929 082__ $$a550
000820929 1001_ $$0P:(DE-HGF)0$$aBick, T.$$b0$$eCorresponding author
000820929 245__ $$aAssimilation of 3D radar reflectivities with an ensemble Kalman filter on the convective scale
000820929 260__ $$aWeinheim [u.a.]$$bWiley$$c2016
000820929 3367_ $$2DRIVER$$aarticle
000820929 3367_ $$2DataCite$$aOutput Types/Journal article
000820929 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1479137585_4501
000820929 3367_ $$2BibTeX$$aARTICLE
000820929 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000820929 3367_ $$00$$2EndNote$$aJournal Article
000820929 520__ $$aAn ensemble data assimilation system for 3D radar reflectivity data is introduced for the convection-permitting numerical weather prediction model of the COnsortium for Small-scale MOdelling (COSMO) based on the Kilometre-scale ENsemble Data Assimilation system (KENDA), developed by Deutscher Wetterdienst and its partners. KENDA provides a state-of-the-art ensemble data assimilation system on the convective scale for operational data assimilation and forecasting based on the Local Ensemble Transform Kalman Filter (LETKF). In this study, the Efficient Modular VOlume RADar Operator is applied for the assimilation of radar reflectivity data to improve short-term predictions of precipitation. Both deterministic and ensemble forecasts have been carried out. A case-study shows that the assimilation of 3D radar reflectivity data clearly improves precipitation location in the analysis and significantly improves forecasts for lead times up to 4 h, as quantified by the Brier Score and the Continuous Ranked Probability Score. The influence of different update rates on the noise in terms of surface pressure tendencies and on the forecast quality in general is investigated. The results suggest that, while high update rates produce better analyses, forecasts with lead times of above 1 h benefit from less frequent updates. For a period of seven consecutive days, assimilation of radar reflectivity based on the LETKF is compared to that of DWD's current operational radar assimilation scheme based on latent heat nudging (LHN). It is found that the LETKF competes with LHN, although it is still in an experimental phase.
000820929 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000820929 588__ $$aDataset connected to CrossRef
000820929 7001_ $$0P:(DE-HGF)0$$aSimmer, C.$$b1
000820929 7001_ $$0P:(DE-HGF)0$$aTrömel, S.$$b2
000820929 7001_ $$0P:(DE-HGF)0$$aWapler, K.$$b3
000820929 7001_ $$0P:(DE-Juel1)138662$$aHendricks-Franssen, Harrie-Jan$$b4
000820929 7001_ $$0P:(DE-HGF)0$$aStephan, K.$$b5
000820929 7001_ $$0P:(DE-HGF)0$$aBlahak, U.$$b6
000820929 7001_ $$0P:(DE-HGF)0$$aSchraff, C.$$b7
000820929 7001_ $$0P:(DE-HGF)0$$aReich, H.$$b8
000820929 7001_ $$0P:(DE-Juel1)145998$$aZeng, Y.$$b9
000820929 7001_ $$0P:(DE-HGF)0$$aPotthast, R.$$b10
000820929 773__ $$0PERI:(DE-600)2089168-4$$a10.1002/qj.2751$$gVol. 142, no. 696, p. 1490 - 1504$$n696$$p1490 - 1504$$tQuarterly journal of the Royal Meteorological Society$$v142$$x0035-9009$$y2016
000820929 8564_ $$uhttps://juser.fz-juelich.de/record/820929/files/qj2751.pdf$$yOpenAccess
000820929 8564_ $$uhttps://juser.fz-juelich.de/record/820929/files/qj2751.gif?subformat=icon$$xicon$$yOpenAccess
000820929 8564_ $$uhttps://juser.fz-juelich.de/record/820929/files/qj2751.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000820929 8564_ $$uhttps://juser.fz-juelich.de/record/820929/files/qj2751.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000820929 8564_ $$uhttps://juser.fz-juelich.de/record/820929/files/qj2751.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000820929 8564_ $$uhttps://juser.fz-juelich.de/record/820929/files/qj2751.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000820929 909CO $$ooai:juser.fz-juelich.de:820929$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000820929 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138662$$aForschungszentrum Jülich$$b4$$kFZJ
000820929 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000820929 9141_ $$y2016
000820929 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000820929 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000820929 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bQ J ROY METEOR SOC : 2015
000820929 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000820929 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000820929 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000820929 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000820929 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000820929 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000820929 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000820929 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000820929 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000820929 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000820929 980__ $$ajournal
000820929 980__ $$aVDB
000820929 980__ $$aUNRESTRICTED
000820929 980__ $$aI:(DE-Juel1)IBG-3-20101118
000820929 9801_ $$aFullTexts