001     820929
005     20210129224654.0
024 7 _ |a 10.1002/qj.2751
|2 doi
024 7 _ |a 0035-9009
|2 ISSN
024 7 _ |a 1477-870X
|2 ISSN
024 7 _ |a 2128/12797
|2 Handle
024 7 _ |a WOS:000375935600024
|2 WOS
037 _ _ |a FZJ-2016-06193
082 _ _ |a 550
100 1 _ |a Bick, T.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Assimilation of 3D radar reflectivities with an ensemble Kalman filter on the convective scale
260 _ _ |a Weinheim [u.a.]
|c 2016
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1479137585_4501
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a An ensemble data assimilation system for 3D radar reflectivity data is introduced for the convection-permitting numerical weather prediction model of the COnsortium for Small-scale MOdelling (COSMO) based on the Kilometre-scale ENsemble Data Assimilation system (KENDA), developed by Deutscher Wetterdienst and its partners. KENDA provides a state-of-the-art ensemble data assimilation system on the convective scale for operational data assimilation and forecasting based on the Local Ensemble Transform Kalman Filter (LETKF). In this study, the Efficient Modular VOlume RADar Operator is applied for the assimilation of radar reflectivity data to improve short-term predictions of precipitation. Both deterministic and ensemble forecasts have been carried out. A case-study shows that the assimilation of 3D radar reflectivity data clearly improves precipitation location in the analysis and significantly improves forecasts for lead times up to 4 h, as quantified by the Brier Score and the Continuous Ranked Probability Score. The influence of different update rates on the noise in terms of surface pressure tendencies and on the forecast quality in general is investigated. The results suggest that, while high update rates produce better analyses, forecasts with lead times of above 1 h benefit from less frequent updates. For a period of seven consecutive days, assimilation of radar reflectivity based on the LETKF is compared to that of DWD's current operational radar assimilation scheme based on latent heat nudging (LHN). It is found that the LETKF competes with LHN, although it is still in an experimental phase.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Simmer, C.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Trömel, S.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wapler, K.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Hendricks-Franssen, Harrie-Jan
|0 P:(DE-Juel1)138662
|b 4
700 1 _ |a Stephan, K.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Blahak, U.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Schraff, C.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Reich, H.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Zeng, Y.
|0 P:(DE-Juel1)145998
|b 9
700 1 _ |a Potthast, R.
|0 P:(DE-HGF)0
|b 10
773 _ _ |a 10.1002/qj.2751
|g Vol. 142, no. 696, p. 1490 - 1504
|0 PERI:(DE-600)2089168-4
|n 696
|p 1490 - 1504
|t Quarterly journal of the Royal Meteorological Society
|v 142
|y 2016
|x 0035-9009
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/820929/files/qj2751.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/820929/files/qj2751.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/820929/files/qj2751.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/820929/files/qj2751.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/820929/files/qj2751.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/820929/files/qj2751.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:820929
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)138662
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b Q J ROY METEOR SOC : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21