000820932 001__ 820932
000820932 005__ 20220930130109.0
000820932 0247_ $$2doi$$a10.5194/gmd-9-1341-2016
000820932 0247_ $$2ISSN$$a1991-959X
000820932 0247_ $$2ISSN$$a1991-9603
000820932 0247_ $$2Handle$$a2128/12798
000820932 0247_ $$2WOS$$aWOS:000376936200003
000820932 037__ $$aFZJ-2016-06196
000820932 082__ $$a910
000820932 1001_ $$0P:(DE-Juel1)140349$$aKurtz, Wolfgang$$b0$$eCorresponding author
000820932 245__ $$aTerrSysMP–PDAF (version 1.0): a modular high-performance data assimilation framework for an integrated land surface–subsurface model
000820932 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2016
000820932 3367_ $$2DRIVER$$aarticle
000820932 3367_ $$2DataCite$$aOutput Types/Journal article
000820932 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1500622306_11790
000820932 3367_ $$2BibTeX$$aARTICLE
000820932 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000820932 3367_ $$00$$2EndNote$$aJournal Article
000820932 520__ $$aModelling of terrestrial systems is continuously moving towards more integrated modelling approaches, where different terrestrial compartment models are combined in order to realise a more sophisticated physical description of water, energy and carbon fluxes across compartment boundaries and to provide a more integrated view on terrestrial processes. While such models can effectively reduce certain parameterisation errors of single compartment models, model predictions are still prone to uncertainties regarding model input variables. The resulting uncertainties of model predictions can be effectively tackled by data assimilation techniques, which allow one to correct model predictions with observations taking into account both the model and measurement uncertainties. The steadily increasing availability of computational resources makes it now increasingly possible to perform data assimilation also for computationally highly demanding integrated terrestrial system models. However, as the computational burden for integrated models as well as data assimilation techniques is quite large, there is an increasing need to provide computationally efficient data assimilation frameworks for integrated models that allow one to run on and to make efficient use of massively parallel computational resources. In this paper we present a data assimilation framework for the land surface–subsurface part of the Terrestrial System Modelling Platform (TerrSysMP). TerrSysMP is connected via a memory-based coupling approach with the pre-existing parallel data assimilation library PDAF (Parallel Data Assimilation Framework). This framework provides a fully parallel modular environment for performing data assimilation for the land surface and the subsurface compartment. A simple synthetic case study for a land surface–subsurface system (0.8 million unknowns) is used to demonstrate the effects of data assimilation in the integrated model TerrSysMP and to assess the scaling behaviour of the data assimilation system. Results show that data assimilation effectively corrects model states and parameters of the integrated model towards the reference values. Scaling tests provide evidence that the data assimilation system for TerrSysMP can make efficient use of parallel computational resources for > 30 k processors. Simulations with a large problem size (20 million unknowns) for the forward model were also efficiently handled by the data assimilation system. The proposed data assimilation framework is useful in simulating and estimating uncertainties in predicted states and fluxes of the terrestrial system over large spatial scales at high resolution utilising integrated models.
000820932 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000820932 536__ $$0G:(DE-Juel1)jibg30_20121101$$aHigh-resolution conditional stochastic modelling of subsurface- land surface interactions (jibg30_20121101)$$cjibg30_20121101$$fHigh-resolution conditional stochastic modelling of subsurface- land surface interactions$$x1
000820932 588__ $$aDataset connected to CrossRef
000820932 7001_ $$0P:(DE-Juel1)161461$$aHe, Guowei$$b1
000820932 7001_ $$0P:(DE-Juel1)151405$$aKollet, Stefan$$b2
000820932 7001_ $$0P:(DE-HGF)0$$aMaxwell, Reed M.$$b3
000820932 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b4
000820932 7001_ $$0P:(DE-Juel1)138662$$aHendricks-Franssen, Harrie-Jan$$b5
000820932 773__ $$0PERI:(DE-600)2456725-5$$a10.5194/gmd-9-1341-2016$$gVol. 9, no. 4, p. 1341 - 1360$$n4$$p1341 - 1360$$tGeoscientific model development$$v9$$x1991-9603$$y2016
000820932 8564_ $$uhttps://juser.fz-juelich.de/record/820932/files/gmd-9-1341-2016.pdf$$yOpenAccess
000820932 8564_ $$uhttps://juser.fz-juelich.de/record/820932/files/gmd-9-1341-2016.gif?subformat=icon$$xicon$$yOpenAccess
000820932 8564_ $$uhttps://juser.fz-juelich.de/record/820932/files/gmd-9-1341-2016.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000820932 8564_ $$uhttps://juser.fz-juelich.de/record/820932/files/gmd-9-1341-2016.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000820932 8564_ $$uhttps://juser.fz-juelich.de/record/820932/files/gmd-9-1341-2016.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000820932 8564_ $$uhttps://juser.fz-juelich.de/record/820932/files/gmd-9-1341-2016.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000820932 8767_ $$92016-01-18$$d2016-01-19$$eAPC$$jZahlung erfolgt$$pGMD-2015-208
000820932 909CO $$ooai:juser.fz-juelich.de:820932$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000820932 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140349$$aForschungszentrum Jülich$$b0$$kFZJ
000820932 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151405$$aForschungszentrum Jülich$$b2$$kFZJ
000820932 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b4$$kFZJ
000820932 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138662$$aForschungszentrum Jülich$$b5$$kFZJ
000820932 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000820932 9141_ $$y2016
000820932 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000820932 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000820932 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000820932 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOSCI MODEL DEV : 2015
000820932 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000820932 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000820932 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000820932 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000820932 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000820932 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000820932 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000820932 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000820932 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000820932 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000820932 980__ $$ajournal
000820932 980__ $$aVDB
000820932 980__ $$aI:(DE-Juel1)IBG-3-20101118
000820932 980__ $$aAPC
000820932 980__ $$aUNRESTRICTED
000820932 9801_ $$aAPC
000820932 9801_ $$aFullTexts