000820934 001__ 820934
000820934 005__ 20210129224658.0
000820934 0247_ $$2doi$$a10.1111/ejss.12306
000820934 0247_ $$2ISSN$$a0022-4588
000820934 0247_ $$2ISSN$$a1351-0754
000820934 0247_ $$2ISSN$$a1365-2389
000820934 0247_ $$2WOS$$aWOS:000368079600006
000820934 037__ $$aFZJ-2016-06198
000820934 082__ $$a630
000820934 1001_ $$0P:(DE-Juel1)144687$$aHeil, Jannis$$b0
000820934 245__ $$aA review of chemical reactions of nitrification intermediates and their role in nitrogen cycling and nitrogen trace gas formation in soil
000820934 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2016
000820934 3367_ $$2DRIVER$$aarticle
000820934 3367_ $$2DataCite$$aOutput Types/Journal article
000820934 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1479138490_4500
000820934 3367_ $$2BibTeX$$aARTICLE
000820934 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000820934 3367_ $$00$$2EndNote$$aJournal Article
000820934 520__ $$aSoil is a major source of nitrogen trace gases (NTGs). Microbial denitrification has long been identified as a source of NTGs under reducing conditions, whereas the production of NTGs during nitrification is far from being completely understood. This review updates information about the role of abiotic processes in the formation of gaseous N products in soil and brings attention to the potential interplay of microbial and chemical soil processes that tend to be neglected in research on NTG emissions. Several reactions that involve the nitrification intermediates, nitrite (NO2−) and hydroxylamine (NH2OH), are known to produce the NTGs nitric oxide (NO) and nitrous oxide (N2O). These abiotic reactions are: the self-decomposition of NO2−, reactions of NO2− with reduced metal cations, nitrosation of soil organic matter (SOM) by NO2−, the reaction between NO2− and NH2OH, and the oxidation of NH2OH by Fe3+ or MnO2. These reactions can occur over a broad range of soil characteristics, but they are disregarded in most current research on NTG studies in favour of biological processes only. Relatively few studies have tried to quantify the contribution of abiotic processes to total NTG emissions, which results in uncertainty in emission models and mitigation strategies. It is difficult to discriminate between biological and abiotic sources because both processes can proceed at the same time in the same soil layer. The potential of stable isotope techniques to disentangle the different processes in soil and to constrain budgets of atmospheric NTGs better are highlighted. Recent advances in stable isotope technologies, such as infrared real-time laser spectroscopy, provide considerable potential for both natural abundance and tracer studies in this field.
000820934 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000820934 588__ $$aDataset connected to CrossRef
000820934 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b1
000820934 7001_ $$0P:(DE-Juel1)142357$$aBrüggemann, N.$$b2$$eCorresponding author
000820934 773__ $$0PERI:(DE-600)2020243-X$$a10.1111/ejss.12306$$gVol. 67, no. 1, p. 23 - 39$$n1$$p23 - 39$$tEuropean journal of soil science$$v67$$x1351-0754$$y2016
000820934 8564_ $$uhttps://juser.fz-juelich.de/record/820934/files/Heil_et_al-2016-European_Journal_of_Soil_Science.pdf$$yRestricted
000820934 8564_ $$uhttps://juser.fz-juelich.de/record/820934/files/Heil_et_al-2016-European_Journal_of_Soil_Science.gif?subformat=icon$$xicon$$yRestricted
000820934 8564_ $$uhttps://juser.fz-juelich.de/record/820934/files/Heil_et_al-2016-European_Journal_of_Soil_Science.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000820934 8564_ $$uhttps://juser.fz-juelich.de/record/820934/files/Heil_et_al-2016-European_Journal_of_Soil_Science.jpg?subformat=icon-180$$xicon-180$$yRestricted
000820934 8564_ $$uhttps://juser.fz-juelich.de/record/820934/files/Heil_et_al-2016-European_Journal_of_Soil_Science.jpg?subformat=icon-640$$xicon-640$$yRestricted
000820934 8564_ $$uhttps://juser.fz-juelich.de/record/820934/files/Heil_et_al-2016-European_Journal_of_Soil_Science.pdf?subformat=pdfa$$xpdfa$$yRestricted
000820934 909CO $$ooai:juser.fz-juelich.de:820934$$pVDB:Earth_Environment$$pVDB
000820934 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b1$$kFZJ
000820934 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142357$$aForschungszentrum Jülich$$b2$$kFZJ
000820934 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000820934 9141_ $$y2016
000820934 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000820934 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000820934 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000820934 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000820934 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR J SOIL SCI : 2015
000820934 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000820934 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000820934 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000820934 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000820934 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000820934 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000820934 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000820934 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000820934 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000820934 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000820934 980__ $$ajournal
000820934 980__ $$aVDB
000820934 980__ $$aUNRESTRICTED
000820934 980__ $$aI:(DE-Juel1)IBG-3-20101118