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A density-dependent effective potential for the baryon-baryon interaction in the presence of the
(hyper)nuclear medium is constructed, based on the leading (irreducible) three-baryon forces de-
rived within SU(3) chiral effective field theory. We evaluate the contributions from three classes:
contact terms, one-pion exchange and two-pion exchange. In the strangeness-zero sector we recover
the known result for the in-medium nucleon-nucleon interaction. Explicit expressions for the ΛN
in-medium potential in (asymmetric) nuclear matter are presented. Our results are suitable for
implementation into calculations of (hyper)nuclear matter. In order to estimate the low-energy
constants of the leading three-baryon forces we introduce the decuplet baryons as explicit degrees of
freedom and construct the relevant terms in the minimal non-relativistic Lagrangian. With these,
the constants are estimated through decuplet saturation. Utilizing this approximation we provide
numerical results for the effect of the three-body force in symmetric nuclear matter and pure neu-
tron matter on the ΛN interaction. A moderate repulsion that increases with density is found in
comparison to the free ΛN interaction.
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I. INTRODUCTION

Three-body forces (3BFs) are an indispensable ingredient of any modern calculation of few-nucleon systems. Specif-
ically, for the three- and four-nucleon systems where rigorous computations can be performed based on the Faddeev
or Faddeev-Yakubovsky equations there is clear evidence that agreement with experimental data cannot be achieved
if one resorts to nucleon-nucleon (NN) forces alone. Three-nucleon forces are required to reproduce correctly the
binding energies in the few-nucleon sector but also for scattering observables such as the proton-deuteron differential
cross section at incident proton energies around 100–200 MeV. For a recent review on these topics see, for example,
Ref. [1]. Accordingly, one expects that such three-body forces are also important for heavier nuclei as well as for
the properties of nuclear matter. Indeed, in the latter case standard calculations based on two-body interactions
and utilizing the Bethe-Goldstone equation are unable to describe the saturation point correctly, i.e., to obtain the
empirical energy per nucleon, of E/A = −16 MeV, at the saturation density, ρ0 = 0.17 fm−3. Three-nucleon forces
are considered as an essential mechanism that could resolve this problem [2–5].

Likewise, three-body forces are expected also to play an important role in strangeness nuclear physics [6], in
particular the Lambda-nucleon-nucleon (ΛNN) interaction. It has been argued in the context of (exotic) neutron star
matter that strongly repulsive 3BFs are needed in order to explain the recent observation of two-solar-mass neutron
stars, i.e., to resolve the so-called hyperon puzzle [7–11]. For example, a phenomenological ΛNN three-body force has
been introduced in Ref. [11], with a repulsive coupling strength chosen large enough just so that the Λ is prevented
from appearing in dense matter and the equation-of-state remains sufficiently stiff to support a 2M� neutron star.
The situation is less clear when it comes to light hypernuclei such as the hypertriton 3

ΛH, or 4
ΛH and 4

ΛHe, owing to
the fact that the two-body interaction in the relevant ΛN and ΣN systems is not well determined from the scarce
experimental data presently available.

Utilizing realistic models of the three-baryon force directly in many-body calculations or in the Brueckner-Bethe-
Goldstone approach (e.g., via the Bethe-Faddeev equations [12]) is a very challenging technical task. Therefore, it
has become customary to follow an alternative and simpler approach that consists in employing a density-dependent
two-body interaction derived from the underlying three-body forces. For the nucleonic sector such a density-dependent
in-medium NN interaction, generated at one-loop order by the leading chiral three-nucleon force, has been constructed
in Ref. [13]. It has been shown in subsequent studies [14, 15] and by several other calculations in the literature [16–21]
that his approximate treatment of three-body forces works very well.

In the present work we investigate the effect of the ΛNN three-body force on the ΛN interaction in the presence of a
nuclear medium. We start from the leading (irreducible) 3BFs, cf. Fig. 1, which have been derived recently [22] within
SU(3) chiral effective field theory (χEFT), a systematic approach that exploits the symmetries of the underlying
QCD. Among other advantages, this approach ensures that the three-body forces are constructed consistently with
the corresponding two-baryon interactions (e.g. ΛN , ΣN) [23, 24]. In our derivation we follow closely the work
of Ref. [13] and extend those calculations to sectors with non-zero strangeness. As a result one obtains a density-
dependent effective baryon-baryon interaction which facilitates the inclusion of effects from 3BFs into many-body
calculations.

The irreducible chiral 3BFs appear formally at next-to-next-to-leading order (NNLO). However, in the nucleonic
sector one has observed that some of the corresponding low-energy constants (LECs) are much larger than expected
from the hierarchy of nuclear forces. This feature has its physical origin in the strong coupling of the πN system to the
low-lying ∆(1232)-resonance. It is therefore natural to include the ∆(1232)-isobar as an explicit degree of freedom in
the chiral Lagrangian (cf. Refs. [25–29]). The small mass difference between nucleons and deltas (293 MeV) introduces
a small scale, which can be included consistently in the chiral power counting scheme and the hierarchy of nuclear
forces. The dominant part of the three-nucleon interaction mediated by two-pion exchange and virtual ∆(1232)
excitation is then promoted to next-to-leading order (NLO). The appearance of the inverse mass splitting explains
the large numerical values of the corresponding LECs [30–33].

In SU(3) χEFT the situation is similar. Specifically, in systems with strangeness S = −1, like ΛNN , intermediate
baryons such as the spin-3/2 Σ∗(1385)-resonance could play an analogous role as the ∆(1232) in the NNN system.

NNLO:

Figure 1. Leading chiral three-baryon interactions: two-meson exchange, one-meson exchange and contact term.
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NLO:

Figure 2. Three-baryon forces arising from virtual decuplet excitation (represented by double lines).

(1) (2a) (2b) (3) (4) (5a) (5b) (6)

Figure 3. Effective two-baryon interaction from genuine three-baryon forces. Contributions arise from two-pion exchange (1),
(2a), (2b), (3), one-pion exchange (4), (5a), (5b) and the contact interaction (6).

Indeed the decuplet-octet mass splittings are on average smaller than the delta-nucleon splitting. Also in SU(3)
χEFT the mass splitting (in the chiral limit) should be counted together with external momenta and meson masses as
O(q) and therefore parts of the NNLO three-baryon interaction are promoted to NLO by the explicit inclusion of the
baryon decuplet, as illustrated in Fig. 2 (see also Refs. [26, 32, 34]). One expects that these NLO contributions give
the dominant part of the 3BFs and thus should provide a reasonable basis for investigating the effects of the ΛNN
interaction. Of particular interest is the long-range contribution arising from two-pion exchange.

In the present paper we exploit the mechanism of decuplet saturation to estimate the strengths of chiral 3BFs. By
including decuplet baryons not only parts of the two-pion exchange 3BF are promoted to NLO but also contributions
that involve contact vertices. This is illustrated in Fig. 2. In the purely nucleonic case such contributions do not
arise because a leading-order ∆NNN four-baryon contact vertex is forbidden by the Pauli principle. The decuplet
induced 3BF of short range still involve two unknown parameters and, therefore, a reliable quantitative estimate of
3BF effects in the strangeness S = −1 sector is difficult to make at present. Contrary to the practice in the nucleonic
sector, a direct determination of the LECs from experimental information on few-baryon systems with strangeness
S = −1 is not (yet) feasible because of the limited amount and accuracy of the data.

This paper is organized as follows. In Sec. II we present the general expressions for the effective two-baryon
potential derived from the irreducible chiral three-baryon forces for all strangeness sectors. As an example we give
the explicit results for the ΛN interaction in symmetric and asymmetric nuclear matter. In Sec. III we introduce the
pertinent chiral Lagrangians including decuplet baryons and estimate the LECs of the 3BFs via decuplet saturation.
Finally, in Sec. IV, we present numerical results for the in-medium ΛN interaction within this approximation. In the
appendices we collect for comparison the explicit expressions for the antisymmetrized NN in-medium interaction in
isospin-symmetric nuclear matter. Furthermore, details related to the construction of the decuplet Lagrangian are
presented.

In this work we consider only those medium corrections which arise from irreducible three-baryon forces. Further
density-dependent contributions originating from reducible three-baryon processes are also known to be important. A
prominent example is the reducible ΛNN interaction involving two-pion exchange and a Σ hyperon in the intermediate
state. An investigation of these reducible contributions in the many-body sector goes beyond the scope of the present
paper. In proper few-body calculations incorporating both Λ and Σ hyperons as explicit degrees of freedom, such
reducible contributions are generated automatically by coupled-channel Faddeev and Yakubovsky equations from
iterated ΛN ↔ ΣN interactions [35].

II. IN-MEDIUM BARYON-BARYON INTERACTION

In this section we derive the effect of a three-body force on the baryon-baryon interaction in the presence of a
(hyper)nuclear medium. We follow closely the work of Ref. [13], where density-dependent corrections to the NN
interaction have been calculated from leading-order chiral three-nucleon forces. In order to obtain an effective baryon-
baryon interaction from the irreducible 3BFs in Fig. 1, one closes two baryon lines which represents diagrammatically
the sum over occupied states within the Fermi sea. Such a “medium insertion” is symbolized by short double lines on
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a baryon propagator. All types of diagrams arising this way are shown in Fig. 3.
We restrict ourselves to the contact term and to the contributions from one- and two-pion exchange processes which

are expected to be dominant. Hence, the calculation is done for equal meson masses. In principle, within SU(3) χEFT
further contributions arise that involve the exchange of at least one heavier meson (kaon or eta meson). At moderate
densities these contributions of much shorter range can effectively be absorbed into a contact term representing the
short-range part of the three-baryon force. When evaluating diagrams the medium insertion provides the factor
−2πδ(k0)θ(kf −|~k|). An additional minus sign comes from a closed fermion loop. Equivalently, the effective two-body
interaction can be constructed from the expressions for the three-baryon potentials in Ref. [22] via the relation

V12 =
∑
B

trσ3

∫
|~k|≤kBf

d3k

(2π)3
V123 , (1)

where trσ3 denotes the spin trace over the third particle and the sum goes over all baryon species B in the Fermi sea
(with Fermi momentum kBf ). In the following, we derive the general expressions of the effective potentials for a single
baryon species B. The full potential is given by a sum over all species. The density of the baryon species B is given
by

ρB = 2

∫
|~k|≤kBf

d3k

(2π)3
=

(kBf )
3

3π2
, (2)

and the full density is obtained by summing over all species in the (hyper)nuclear medium, ρ =
∑
B ρB .

As done in Ref. [13], we consider the scattering of two baryons within the medium in the center-of-mass frame

B1(~p ) +B2(−~p )→ B3(~p ′) +B4(−~p ′) , (3)

for on-shell kinematics: p2 = p′2. For direct diagrams the relevant momentum transfer is ~q = ~p ′−~p, for the exchange-
type diagrams the relevant momentum transfer is ~k = ~p ′ + ~p.

In the course of the calculation one encounters integrals of one pion propagator or the product of two pion propa-
gators over a Fermi sphere. The loop functions Γi involving a single pion propagator are defined by

∫
|~l|≤kBf

d3l

2π

1

m2
π + (~l + ~p )2

 1
~l

~l ⊗~l

 =

 Γ0(p, kBf )

~p Γ1(p, kBf )

1Γ2(p, kBf ) + ~p⊗ ~pΓ3(p, kBf )

 . (4)

The loop functions Gi involving two different pion propagators are given by

∫
|~l|≤kBf

d3l

2π

1

[m2
π + (~l + ~p )2][m2

π + (~l + ~p ′)2]



1
~l

~l ⊗~l

l2

l2~l
l4


=



G0(p, q, kBf )

(~p ′ + ~p )G1(p, q, kBf )

1G2(p, q, kBf ) + (~p ′ + ~p )⊗ (~p ′ + ~p )G3(p, q, kBf )

+(~p ′ − ~p )⊗ (~p ′ − ~p )G4(p, q, kBf )

G∗(p, q, k
B
f )

(~p ′ + ~p )G1∗(p, q, k
B
f )

G∗∗(p, q, k
B
f )


. (5)

The explicit formulas for the loop functions can be found in Section III.A. of Ref. [13]. Note that in some cases the
expression on the left-hand side of Eq. (5) (with two pion propagators) appears with the substitution ~p ′ → −~p ′.
Consequently, this substitution has also to be done on the right-hand side and the arguments of Gi are changed to
Gi(p, k, k

B
f ).

A. Contributions from two-pion exchange

Let us start with the two-pion exchange contribution to the in-medium baryon-baryon interaction. The corre-
sponding three-baryon potential for a prototype two-meson exchange diagram is given in Eq. (34) in Ref. [22] and it
reads

V = − 1

4f4
0

~σA · ~qli ~σC · ~qnk
(~q 2
li +m2

φ1
)(~q 2

nk +m2
φ2

)

(
N1
lmn
ijk

+N2
lmn
ijk

~qli · ~qnk +N3
lmn
ijk

i (~qli × ~qnk) · ~σB
)
, (6)
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X med,2a,D med,2a,E med,2b,D med,2b,E

X1 N3
3B4
12B
−N3

3B4
B12

N3
4B3
12B
−N3

4B3
B12

N3
B43
2B1
−N3

43B
2B1

N3
B34
2B1
−N3

34B
2B1

X2 N1
3B4
12B

N1
4B3
12B

N1
B43
2B1

N1
B34
2B1

X3 N1
3B4
B12

N1
4B3
B12

N1
43B
2B1

N1
34B
2B1

X4 −N2
3B4
12B
−N3

3B4
12B

−N2
4B3
12B
−N3

4B3
12B

−N2
B43
2B1
−N3

B43
2B1

−N2
B34
2B1
−N3

B34
2B1

X5 N3
3B4
B12
−N2

3B4
B12

N3
4B3
B12
−N2

4B3
B12

N3
43B
2B1
−N2

43B
2B1

N3
34B
2B1
−N2

34B
2B1

Table I. SU(3) factors for the two-meson-exchange contributions of type (2).

adopting the same definitions and conventions as in Ref. [22]. The quantity f0 = 93.0 MeV is the meson-decay
constant in the chiral limit and mφ1

,mφ2
are the masses of the two exchanged meson. The potential V in Eq. (6)

involves a variety of combinations of SU(3) factors

N1
lmn
ijk

= NBlBiφ̄1
NBnBkφ2

∑
cf=bD,bF ,b0

cf

4
(Nf

φ1
m
j φ̄2

+Nf

φ̄2
m
j φ1

) ,

N2
lmn
ijk

= −NBlBiφ̄1
NBnBkφ2

∑
cf=b1,b2,b3,b4

cf (Nf

φ1
m
j φ̄2

+Nf

φ̄2
m
j φ1

) ,

N3
lmn
ijk

= NBlBiφ̄1
NBnBkφ2

∑
cf=d1,d2,d3

cf (Nf

φ1
m
j φ̄2
−Nf

φ̄2
m
j φ1

) . (7)

Following the detailed exposition of all possible diagrams in Fig. 5 of Ref. [22], we close the two baryon lines B3 and
B6 for each three-body diagram. This leads to the topologies (1), (2a), (2b), and (3) shown in Fig. 3.

Performing the spin trace and integrating over a Fermi sphere according to Eq. (1) for the diagrams leading to the
topology (1) in Fig. 3, one obtains for the direct effective potential (involving the momentum transfer ~q = ~p ′ − ~p )
generated by the Fermi sea of the baryon species B

V med,1,D =
ρB
4f4

0

~σ1 · ~q ~σ2 · ~q
(q2 +m2

π)2
(N1

4B3
2B1
−N2

4B3
2B1

q2) . (8)

The resulting interaction is proportional to the density ρB of the baryon species B. The exchange diagrams (involving
the momentum transfer ~k = ~p ′ + ~p ) lead to the same contribution with different factors N :

V med,1,E = −P (σ) ρB
4f4

0

~σ1 · ~k ~σ2 · ~k
(k2 +m2

π)2
(N1

3B4
2B1
−N2

3B4
2B1

k2) . (9)

It can be obtained from the direct contribution by multiplying with the negative spin-exchange operator, −P (σ) =

− 1
2 (1 + ~σ1 · ~σ2), and substituting ~p ′ → −~p ′ (and therefore also ~q → −~k).
Similarly, the topology (2a) of Fig. 3 gives rise to the following direct potential:

V med,2a,D = − 1

16π2f4
0 (q2 +m2

π)

{
X1~σ1 · ~q ~σ2 · ~q

[2
3

(kBf )
3 −m2

πΓ0(p, kBf )
]

+
(
X2~σ1 · ~q ~σ2 · ~p ′ +X3~σ1 · ~p ′ ~σ2 · ~q

)[
Γ0(p, kBf ) + Γ1(p, kBf )

]
+
(
X4~σ1 · ~q ~σ2 · ~p ′ +X5~σ1 · ~p ′ ~σ2 · ~q

)q2

2

[
Γ0(p, kBf ) + 2Γ1(p, kBf ) + Γ3(p, kBf )

]
+ (X4 +X5)~σ1 · ~q ~σ2 · ~q Γ2(p, kBf )

}
, (10)

written in terms of the loop functions Γi. The relevant SU(3) factors Xi are given in the first column of Tab. I. The
exchange diagrams lead to the same contributions as the direct ones, again multiplying with −P (σ) and making the
substitution ~p ′ → −~p ′ (and therefore also ~q → −~k):

V med,2a,E = −P (σ)V med,2a,D
∣∣∣
~p ′→−~p ′

. (11)
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X med,3,D med,3,E

X1 N1
43B
B12

+N1
B43
12B

N1
34B
B12

+N1
B34
12B

X2 −N2
43B
B12
−N2

B43
12B

−N2
34B
B12
−N2

B34
12B

X3 N3
43B
B12
−N3

B43
12B

N3
34B
B12
−N3

B34
12B

X4 N1
43B
B12

+N1
B43
12B

N1
34B
B12

+N1
B34
12B

X5 −N2
43B
B12
−N3

43B
B12
−N2

B43
12B

+N3
B43
12B

−N2
34B
B12
−N3

34B
B12
−N2

B34
12B

+N3
B34
12B

X6 −N1
43B
B12

+N1
B43
12B

−N1
34B
B12

+N1
B34
12B

X7 N2
43B
B12
−N3

43B
B12
−N2

B43
12B
−N3

B43
12B

N2
34B
B12
−N3

34B
B12
−N2

B34
12B
−N3

B34
12B

Table II. SU(3) factors for two-meson-exchange contribution of type (3).

Furthermore, the coefficients Xi have to be inserted according to the second column of Tab. I. The reflected topology
(2b) in Fig. 3 leads to a result similar to that of topology (2a):

V med,2b,D = − 1

16π2f4
0 (q2 +m2

π)

{
X1~σ1 · ~q ~σ2 · ~q

[2
3

(kBf )
3 −m2

πΓ0(p, kBf )
]

−
(
X2~σ1 · ~q ~σ2 · ~p+X3~σ1 · ~p ~σ2 · ~q

)[
Γ0(p, kBf ) + Γ1(p, kBf )

]
−
(
X4~σ1 · ~q ~σ2 · ~p+X5~σ1 · ~p ~σ2 · ~q

)q2

2

[
Γ0(p, kBf ) + 2Γ1(p, kBf ) + Γ3(p, kBf )

]
+ (X4 +X5)~σ1 · ~q ~σ2 · ~q Γ2(p, kBf )

}
, (12)

where the SU(3) factors Xi are now given in the third column of Tab. I. For the corresponding exchange diagrams
one obtains again

V med,2b,E = −P (σ)V med,2b,D
∣∣∣
~p ′→−~p ′

, (13)

with the Xi listed in the fourth column of Tab. I.
The diagrams contributing to the topology (3) in Fig. 3 lead to the following direct potential

V med,3,D = − 1

16π2f4
0

{
X1

1

2

[
2Γ0(p, kBf )− (q2 + 2m2

π)G0(p, q, kBf )
]

+X2
1

4

[8
3

(kBf )
3 − 4(q2 + 2m2

π)Γ0(p, kBf )− 2q2Γ1(p, kBf ) + (q2 + 2m2
π)2G0(p, q, kBf )

]
+X3

[
G0(p, q, kBf ) + 4G1(p, q, kBf ) + 4G3(p, q, kBf )

]
(~q × ~p ) · ~σ1 (~q × ~p ) · ~σ2

+X3G2(p, q, kBf )(q2~σ1 · ~σ2 − ~σ1 · ~q ~σ2 · ~q )

+
i

2
(~q × ~p ) · (~σ1 + ~σ2)

[
X4

(
G0(p, q, kBf ) + 2G1(p, q, kBf )

)
+X5

1

2

(
2Γ0(p, kBf ) + 2Γ1(p, kBf )− (q2 + 2m2

π)
(
G0(p, q, kBf ) + 2G1(p, q, kBf )

))]
+

i

2
(~q × ~p ) · (~σ1 − ~σ2)

[
X6

(
G0(p, q, kBf ) + 2G1(p, q, kBf )

)
+X7

1

2

(
2Γ0(p, kBf ) + 2Γ1(p, kBf )− (q2 + 2m2

π)
(
G0(p, q, kBf ) + 2G1(p, q, kBf )

))]}
, (14)

where the new SU(3) factors Xi are given in the first column of Tab. II. In order to write out this potential both loop
functions Γi and Gi are needed. The exchange diagrams lead to the same contribution, multiplying with −P (σ) and
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substituting ~q → −~k:

V med,3,E = −P (σ)V med,3,D
∣∣∣
~p ′→−~p ′

, (15)

where the appropriate combinations Xi are given in the second column of Tab. II.

B. Contributions from one-pion exchange

Let us now turn to the one-meson exchange three-baryon interaction. We take the prototype one-meson exchange
potentials (written in Eq. (29) of Ref. [22]) and antisymmetrize the four-baryon contact vertex, (this means the four
diagrams in each line of Fig. 3 of Ref. [22] are summed up). This leads to the expression:

V =
1

2f2
0

~σA · ~qli
~q 2
li +m2

φ

(
N1
lmn
ijk

~σB · ~qli +N2
lmn
ijk

~σC · ~qli +N3
lmn
ijk

i (~σB × ~σC) · ~qli
)
, (16)

where the momentum transfer ~qli is given by ~qli = ~pl − ~pi and the new SU(3) coefficients read

N1
lmn
ijk

= NBlBiφ

( 10∑
f=1

DfN
f
nm
kj φ̄
− 1

2

10∑
f=1

DfN
f
nm
jk φ̄
−

14∑
f=11

DfN
f
nm
jk φ̄
− 1

2

10∑
f=1

DfN
f
mn
kj φ̄

+

14∑
f=11

DfN
f
mn
kj φ̄

)
,

N2
lmn
ijk

= NBlBiφ

( 10∑
f=1

DfN
f
mn
jk φ̄
− 1

2

10∑
f=1

DfN
f
nm
jk φ̄

+

14∑
f=11

DfN
f
nm
jk φ̄
− 1

2

10∑
f=1

DfN
f
mn
kj φ̄
−

14∑
f=11

DfN
f
mn
kj φ̄

)
,

N3
lmn
ijk

= NBlBiφ

( 14∑
f=11

DfN
f
mn
jk φ̄
−

14∑
f=11

DfN
f
nm
kj φ̄

+
1

2

10∑
f=1

DfN
f
nm
jk φ̄
− 1

2

10∑
f=1

DfN
f
mn
kj φ̄

)]
. (17)

Next we have to consider all 9 rows of diagrams in Fig. 3 of Ref. [22] corresponding to all possibilities to close the
baryon lines B3 and B6. This procedure leads to the three one-pion exchange topologies (4), (5a) and (5b) displayed
Fig. 3.

Topology (4) gives rise to a direct contribution to the in-medium baryon-baryon potential of the form

V med,4,D =
ρB

2f2
0 (q2 +m2

π)
~σ1 · ~q ~σ2 · ~q (N1

34B
12B

+N2
4B3
2B1

) , (18)

which depends linearly on the density ρB of baryon species B. Similarly, the exchange diagrams yield

V med,4,E =
ρB

4f2
0 (k2 +m2

π)
P (σ)~σ1 · ~k ~σ2 · ~k (N1

4B3
12B

+N2
4B3
12B

+ 2N3
4B3
12B

+N1
34B
2B1

+N2
34B
2B1
− 2N3

34B
2B1

) . (19)

Furthermore, one obtains from topology (5a) in Fig. 3 the following effective baryon-baryon potential:

V med,5a =
1

8π2f2
0

{
(X1 +X2~σ1 · ~σ2)

(2

3
(kBf )

3 −m2
πΓ0(p, kBf )

)
+X3

[
~σ1 · ~p ′ ~σ2 · ~p ′

(
Γ0(p, kBf ) + 2Γ1(p, kBf ) + Γ3(p, kBf )

)
+ Γ2(p, kBf )~σ1 · ~σ2

]}
, (20)

where the coefficients Xi are listed in the first column of Tab. III. The mirror topology (5b) in Fig. 3 gives rise to
the same result, but with the replacement ~p ′ → ~p, due to the reflection of the pion loop from the final state into the
initial state:

V med,5b = V med,5a|~p ′→~p , (21)

and with the modified coefficients Xi given in the second column of Tab. III.
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X med,5a med,5b

X1
1
2

(
N1

34B
B12

+N2
34B
B12

+ 2N3
34B
B12

+N1
4B3
B12

+N2
4B3
B12
− 2N3

4B3
B12

)
1
2

(
N1
B34
2B1

+N2
B34
2B1

+ 2N3
B34
2B1

+N1
B34
12B

+N2
B34
12B
− 2N3

B34
12B

)
X2

1
2

(
N2

34B
B12
−N1

34B
B12

+N1
4B3
B12
−N2

4B3
B12

)
1
2

(
N1
B34
2B1
−N2

B34
2B1

+N2
B34
12B
−N1

B34
12B

)
X3 N1

34B
B12
−N3

34B
B12

+N2
4B3
B12

+N3
4B3
B12

N2
B34
2B1
−N3

B34
2B1

+N1
B34
12B

+N3
B34
12B

Table III. SU(3) factors for one-meson-exchange contributions of type (5).

C. Contributions from contact terms

Finally, we have to study the contact interaction, this means the topology (6) in Fig. 3. The fully antisymmetrized
three-baryon contact potential reads (see Eqs. (8) and (12) in [22])

V = −
[
N1

456
123

+N2
456
123
~σ1 · ~σ2 +N3

456
123
~σ1 · ~σ3 +N4

456
123
~σ2 · ~σ3 +N5

456
123

i~σ1 · (~σ2 × ~σ3)
]
. (22)

Here, the spin trace over the third particle eliminates the last three term and the (trivial) Fermi sphere integration
gives a factor ρB , such that one obtains the following momentum-independent in-medium potential:

V med,6 = −ρB(N1
34B
12B

+N2
34B
12B

~σ1 · ~σ2) . (23)

The complete in-medium baryon-baryon potential due to the baryon species B in the Fermi sea is then given by
the sum of the contributions written in Eqs. (8)–(15), (18)–(21) and (23).

D. In-medium lambda-nucleon interaction

In view of its outstanding role in hypernuclear physics, we present here as an example the explicit expressions for
the effective ΛN interaction in isospin-symmetric as well as isospin-asymmetric nuclear matter (ρp 6= ρn), as it results
from two-pion-exchange, one-pion-exchange and contact ΛNN three-body forces. Only the expressions for the Λn
potential need to be given. The Λp potential can be easily written by interchanging the Fermi momenta kpf with knf
(or the densities ρp with ρn) in the expressions for Λn. Note that this relation between the Λn and Λp potentials
provides a non-trivial check of our calculation.

The following expressions result from summing up the contributions from the protons and neutrons in the Fermi
sea. Note that the topologies (1), (2a) and (2b) vanish here due to the non-existence of an isospin-symmetric ΛΛπ
vertex. Therefore, the two-pion exchange contribution to the effective Λn potential stems solely from the topology
(3) and it reads

V med,3,D
Λn = − g2

A

12π2f4
0

{
(3b0 + bD)m2

π

1

2

[
2Γ̃0(p)− (q2 + 2m2

π)G̃0(p, q)
]

+ (2b2 + 3b4)
1

4

[8
3

((knf )
3

+ 2(kpf )
3
)− 4(q2 + 2m2

π)Γ̃0(p)− 2q2Γ̃1(p) + (q2 + 2m2
π)2G̃0(p, q)

]
+ i(~q × ~p ) · ~σ2

[
(3b0 + bD)m2

π(G̃0(p, q) + 2G̃1(p, q)) +
1

2
(2b2 + 3b4)

(
2Γ̃0(p) + 2Γ̃1(p)

− (q2 + 2m2
π)(G̃0(p, q) + 2G̃1(p, q))

)]}
, (24)

where we have introduced the linear combinations Γ̃i(p) = Γi(p, k
n
f ) + 2Γi(p, k

p
f ) and G̃i(p, q) = Gi(p, q, k

n
f ) +

2Gi(p, q, k
p
f ). Note that the exchange contribution vanishes identically (in the case of two-pion exchange), V med,3,E

Λn =

0. The potential in Eq. (24) depends on the axial-vector coupling constant gA and on several LECs (b’s) of the
sub-leading chiral meson-baryon Lagrangian [36–39]. The only spin-dependent term is the one proportional to
~σ2 = 1

2 (~σ1 + ~σ2) − 1
2 (~σ1 − ~σ2) and therefore one recognizes a symmetric and an antisymmetric spin-orbit poten-

tial of equal but opposite strength. Note that the in-medium NN potential due to two-pion exchange possesses a
much richer spin structure, cf. Appendix A.



9

Interestingly, topology (4) gives rise to a one-pion exchange Λn interaction,

V med,4,D
Λn =

D′1gA(ρp − ρn)

2f2
0 (q2 +m2

π)
~σ1 · ~q ~σ2 · ~q , V med,4,E

Λn = 0 , (25)

which is induced by an isospin-asymmetry in the nuclear medium. Again, there is no contribution from the exchange-
type diagrams. Furthermore, the topologies (5a) and (5b) lead to the combined in-medium Λn potential:

V med,5,a+b
Λn =

gA
4π2f2

0

{
D′2
3

(
2((knf )

3
+ 2(kpf )

3
)− 3m2

πΓ̃0(p)
)

+D′1Γ̃2(p)~σ1 · ~σ2

+D′1
~σ1 · ~p ~σ2 · ~p+ ~σ1 · ~p ′ ~σ2 · ~p ′

2

(
Γ̃0(p) + 2Γ̃1(p) + Γ̃3(p)

)}
, (26)

where the expressions for the constants D′1 and D′2 can be found in Eq. (44) of Ref. [22].
Finally, one obtains from the ΛNN contact interaction the following contribution to the in-medium potential

V med,6
Λn = 4ρnC

′
1 + 2ρp

(
C ′1 + 3C ′3 + C ′2 ~σ1 · ~σ2

)
, (27)

where the definition of the constants C ′i can be found in Eq. (39) of Ref. [22].
Moreover, as a check we have rederived the effective NN interaction in isospin-symmetric nuclear matter within

our formalism which already includes antisymmetrization. The corresponding results are summarized in Appendix A
and these agree with the antisymmetrized expressions of Ref. [13].

III. THREE-BARYON FORCE THROUGH DECUPLET SATURATION

In this section an estimate is performed for the LECs of the leading 3BFs by applying decuplet saturation. This
concerns the meson-baryon LECs b0,F,D, b1,2,3,4, d1,2,3 that appear in the two-meson exchange 3BF and the LECs Di

and Ci for the one-meson exchange and contact 3BFs [22]. We use these “saturated” LECs in the evaluation of the
effective Λn interaction presented in the previous section. The aim is to provide a qualitative assessment of its density
dependence induced by the different pieces of three-body interactions. This estimate via decuplet saturation actually
applies beyond the present consideration of chiral 3BFs in nuclear matter to any few- or many-baryon system where
three-body forces are of relevance.

The estimated LECs are obtained by calculating the diagrams in Fig. 2 including decuplet baryons as intermediate
states. The chiral Lagrangian for the octet-to-decuplet baryon transition involving a single pseudoscalar meson is
employed, and the pertinent non-relativistic contact vertex between three octet baryons and one decuplet baryon,
B∗BBB, is constructed. Note that in the nucleonic sector only the two-pion exchange diagram with an intermediate
∆(1232)-isobar in Fig. 2 is allowed. Other diagrams are forbidden by the Pauli principle, as will be shown in
Appendix B. In fact, for three flavors the corresponding group theoretical considerations restrict the number of
possible contact couplings BB → B∗B to only two.

A. Lagrangians including decuplet baryons

Here, we present the minimal set of terms in the chiral Lagrangian, that are necessary for evaluating the diagrams
including decuplet baryons in Fig. 2. The leading-order interaction Lagrangian between octet and decuplet baryons
and octet pseudoscalar mesons that respects SU(3) symmetry reads in the non-relativistic limit (see, e.g., Ref. [40]):

L =
C

f0

3∑
a,b,c,d,e=1

εabc

(
T̄ade~S

† · (~∇φdb)Bec + B̄ce~S · (~∇φbd)Tade
)
, (28)

where the decuplet baryons are combined to the totally symmetric three-index tensor T , with components

T 111 = ∆++ , T 112 = 1√
3
∆+ , T 122 = 1√

3
∆0 , T 222 = ∆− ,

T 113 = 1√
3
Σ∗+ , T 123 = 1√

6
Σ∗0 , T 223 = 1√

3
Σ∗− ,

T 133 = 1√
3
Ξ∗0 , T 233 = 1√

3
Ξ∗− ,

T 333 = Ω− . (29)
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The traceless 3 × 3 matrices B and φ in Eq. (28) include the octet baryons and the pseudo-scalar mesons and their
explicit form can be found, e.g., in Ref. [22]. The spin transition matrices ~S connect two-component spinors of
octet baryons with four-component spinors of decuplet baryons (cf. Ref. [41]), and they fulfill the relation SiSj

† =
1
3 (2δij−iεijkσk). Only one single LEC, C, is present at leading order and we use for it the (large-Nc) value C = 3

4gA ≈ 1
[28]. Rewriting the lowest-order decuplet Lagrangian in Eq. (28) in the particle basis gives

L =
C

f0

∑
i,j,k

NB∗i φjBk

[
B̄∗i ~S

† ·
(
~∇φj

)
Bk + B̄k ~S ·

(
~∇φ†j

)
B∗i

]
, (30)

with SU(3) coefficients NB∗i φjBk
and with the physical meson fields φi ∈

{
π0, π+, π−,K+, K−, K0, K̄0, η

}
, octet

baryon fields Bi ∈
{
n, p, Λ, Σ0, Σ+, Σ−, Ξ0, Ξ−

}
and decuplet baryon fields B∗i ∈

{
∆−, ∆0, ∆+, ∆++, Σ∗0, Σ∗+,

Σ∗−, Ξ∗0, Ξ∗−, Ω−
}
.

The other vertex including decuplet baryons that appears in Fig. 2 is the leading-order B∗BBB contact vertex,
involving three octet and one decuplet baryon. The minimal non-relativistic contact Lagrangian that respects SU(3)
symmetry takes the form (in matrix notation):

L = H1

3∑
a,b,c,
d,e,f=1

εabc
[ (
T̄ade~S

†Bdb

)
·
(
B̄fc~σBef

)
+
(
B̄bd~S Tade

)
·
(
B̄fe~σBcf

) ]

+H2

3∑
a,b,c,
d,e,f=1

εabc
[ (
T̄ade~S

†Bfb

)
·
(
B̄dc~σBef

)
+
(
B̄bf ~S Tade

)
·
(
B̄fe~σBcd

) ]
, (31)

with two low-energy constantsH1 andH2. The derivation of this minimal Lagrangian consistent with group theoretical
considerations can be found in Appendix B. In the particle basis the Lagrangian in Eq. (31) reads:

L =

2∑
κ=1

Hκ

∑
i,j,k,l

Nκ
B∗i BjBkBl

[ (
B̄∗i ~S

†Bj

)
·
(
B̄k~σBl

)
+
(
B̄j ~S B

∗
i

)
·
(
B̄l~σBk

) ]
, (32)

where i runs now over the decuplet baryons; j, k, l run over the octet baryons, and the N ’s are again SU(3) coefficients.
According to naive dimensional counting [42], the constants H1 and H2 should be of the order O(1/f2

0 ). Note that
this Lagrangian automatically incorporates the feature that NN → ∆N transitions in S-waves are forbidden by the
Pauli exclusion principle. Isospin conservation requires that the NN state has total isospin I = 1, but then the total
spin is S = 0 which is impossible in the N∆ system.

B. Estimates of low-energy constants

Now we estimate the LECs of the leading three-baryon interaction by evaluating the diagrams with intermediate
decuplet baryons shown in Fig. 2. By comparison with the general three-baryon potentials one can directly read off
the LECs at leading order. As a by-product one obtains a set of relations between these constants.

= +

Figure 4. Saturation of the NLO baryon-meson vertex via decuplet resonances.

For the three-baryon interaction with two-meson exchange it suffices to consider the subprocess B1φ1 → B2φ2

shown in Fig. 4. The general diagram on the left-hand side stems from the Lagrangian Eq. (31) in Ref. [22] and it
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provides the following transition matrix element

V =
∑

cf=bD,bF ,b0

cf

4f2
0

(Nf

φ1
o
iφ̄2

+Nf

φ̄2
o
iφ1

)

+
∑

cf=b1,b2,b3,b4

cf

f2
0

(Nf

φ1
o
iφ̄2

+Nf

φ̄2
o
iφ1

)~q1 · ~q2

−
∑

cf=d1,d2,d3

cf

f2
0

(Nf

φ1
o
iφ̄2
−Nf

φ̄2
o
iφ1

) i (~q1 × ~q2) · ~σ , (33)

where the SU(3) coefficients Nf are defined in Eq. (33) of Ref. [22]. From the two diagrams on the right-hand side of
Fig. 4 (with intermediate decuplet baryons) one obtains

V = − C2

3∆f2
0

[
2(NB∗φ2Bo

NB∗φ1Bi
+NB∗φ̄1Bo

NB∗φ̄2Bi
) ~q1 · ~q2

+ (NB∗φ2Bo
NB∗φ1Bi

−NB∗φ̄1Bo
NB∗φ̄2Bi

) i (~q1 × ~q2) · ~σ
]
, (34)

where we have introduced the average decuplet-octet baryon mass splitting ∆ = M10 −M8. After summing over
all intermediate decuplet baryons B∗, a direct comparison of the transition matrix elements for all combinations of
baryons and mesons leads to the following relations for the LECs of the meson-baryon Lagrangian in Eq. (31) of
Ref. [22]:

bD = 0 , bF = 0 , b0 = 0 ,

b1 =
7C2

36∆
≈ 0.59 , b2 =

C2

4∆
≈ 0.76 , b3 = −C

2

3∆
≈ −1.01 , b4 = −C

2

2∆
≈ −1.51 ,

d1 =
C2

12∆
≈ 0.25 , d2 =

C2

36∆
≈ 0.08 , d3 = −C

2

6∆
≈ −0.50 , (35)

where all numerical values are in GeV−1 and we have inserted ∆ ≈ 300 MeV together with C = 3
4gA ≈ 0.95.

According to dimensional arguments [42, 43] the constants bi, di are of order O(1/Λχ), with Λχ the chiral symmetry
breaking scale of the order of 1 GeV. These constants are formally enhanced by a factor Λχ/∆ and thus promoted
to O(1/∆). Obviously all LECs are proportional to C2, so that the two-meson exchange 3BF does not involve any
unknown constant in decuplet saturation. The result above is in line with the well-known ∆(1232) contributions to
the LECs c1, c3, c4 in the nucleonic sector [30, 32, 37]:

c1 =
1

2
(2b0 + bD + bF ) = 0 , c3 = b1 + b2 + b3 + 2b4 = − g

2
A

2∆
, c4 = 4(d1 + d2) =

g2
A

4∆
. (36)

= +

Figure 5. Saturation of the BB → BBφ ver-
tex via decuplet resonances.

k l

i j

A B

φ

Figure 6. Generic BB → BBφ
diagram.

k l

i j

A B

φ
B∗ +

k l

i j

A B

φ
B∗

Figure 7. Generic BB → BBφ decuplet
diagrams.

Now we turn to the one-meson-exchange part of the three-baryon forces. It is sufficient to study decuplet saturation
for the subprocess B1B2 → B3B4φ depicted in Fig. 5. In the generic diagram of Fig. 6 the baryon pairs i-k and j-l
are in spin-spaces A and B, respectively. The corresponding transition amplitude reads

V ABkl
ij

=
i

f0

( 10∑
f=1

DfN
f
kl
ij φ̄

~σB · ~q +

14∑
f=11

DfN
f
kl
ij φ̄

i (~σA × ~σB) · ~q
)
, (37)
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where ~q is the momentum of the emitted meson and the Nf are the SU(3) coefficients defined in Eq. (28) of Ref. [22].
Since the baryon B1 in the initial state belongs (per definition) to spin-space 1 and B2 to spin-space 2, the labels A
and B are determined by i and j, and, therefore, we can drop them in the notation. The complete transition matrix
element of the process B1B2 → B3B4φ is then given by two direct diagrams and two exchanged diagrams to which
the (negative) spin-exchange operator P (σ) = 1

2 (1 + ~σ1 · ~σ2) has to be applied in the final state:

V = V34
12

+ V43
21
− P (σ)

(
V43

12
+ V34

21

)
. (38)

In the next step we consider the two diagrams on the right-hand side of Fig. 5. From the generic diagrams in Fig. 7
including a decuplet baryon B∗ one finds the following transition matrix element (with yet unspecified spin spaces A
and B):

V ABkl
ij

=
iC

3∆f0

[
(H1N

1
B∗BkBjBl

+H2N
2
B∗BkBjBl

)NB∗φ̄Bi

(
2~σB · ~q − i(~σA × ~σB) · ~q

)
+ (H1N

1
B∗BiBlBj

+H2N
2
B∗BiBlBj

)NB∗φBk

(
2~σB · ~q + i(~σA × ~σB) · ~q

)]
. (39)

It gets completed by antisymmetrization according to Eq. (38) and summing over all intermediate decuplet baryons
B∗. Now, we can compare the complete transition matrix elements for all combinations of baryons and mesons. This
leads to the following results for the 14 LECs of the minimal non-relativistic chiral Lagrangian for the four-baryon-
one-meson contact vertices (see Eq. (27) in Ref. [22]):

D1 = −7C(H1 +H2)

18∆
,

D2 = −C(H1 − 7H2)

18∆
,

D3 =
C(3H1 + 11H2)

18∆
,

D4 = −C(9H1 + 13H2)

18∆
,

D5 = −C(H1 − 3H2)

18∆
,

D6 = −C(5H1 − 3H2)

18∆
,

D7 =
2H2C

9∆
,

D8 = −C(5H1 − 3H2)

18∆
,

D9 = −C(5H1 + 9H2)

9∆
,

D10 = −5C(H1 +H2)

6∆
,

D11 =
C(H1 + 9H2)

18∆
,

D12 =
C(2H1 + 5H2)

9∆
,

D13 =
C(H1 + 5H2)

18∆
,

D14 = −C(3H1 + 7H2)

18∆
. (40)

According to dimensional arguments [42, 43] the constants Di are of order O(1/(Λχf
2
0 )). In the nucleonic sector

the corresponding single constant D = 4(D1 −D3 + D8 −D10) is commonly denoted by D = cD/(Λχf
2
0 ), where cD

is of order 1. In the decuplet approximation for three flavors the constants Di get promoted to order O(1/(∆f2
0 )).

=

Figure 8. Saturation of the six-baryon contact interaction
via decuplet resonances.

l m n

i j k

A B C

B∗

Figure 9. Generic three-body decuplet contact di-
agram.

Finally, in order to estimate the LECs of the six-baryon contact Lagrangian in Eq. (14) of Ref. [22], we consider
the process B1B2B3 → B4B5B6 and its diagrammatic realization in terms of B∗ exchange, as shown in Fig. 8. The
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three-body potential provided by the left diagram in Fig. 8 is calculated by performing all 36 Wick contractions as
described in Eqs. (8) and (12) of Ref. [22]. The evaluation of the diagram on the right-hand side of Fig. 8 follows
using a similar procedure. From the generic diagram in Fig. 9 with an intermediate decuplet baryon, B∗, in which the
baryon pair i-l belongs to spin space A, the pair j-m to spin space B and the pair k-n to spin space C, one obtains
the following expression for the transition potential

V ABClmn
ijk

= − 1

3∆
(H1N

1
B∗BmBiBl

+H2N
2
B∗BmBiBl

)(H1N
1
B∗BjBnBk

+H2N
2
B∗BjBnBk

)

× (2~σA · ~σC − i(~σA × ~σC) · ~σB) . (41)

Note that the relation for the transition spin operators, SaSb† = 1
3 (2δab− iεabcσc), implies a sum over the four decuplet

spin states. In order that Eq. (41) becomes comparable to the three-baryon contact potential derived in Ref. [22],
one still has to permute the three spin-1/2 fermions in the initial and in the final state (i.e. 36 Wick contractions
have to be performed). Since the baryons B1, B2, B3 are (per definition) in the spin-spaces 1, 2, 3, respectively,
the assignments A,B,C are determined by i, j, k, hence these superscripts can be dropped. The six direct Wick
contractions contributing to the process B1B2B3 → B4B5B6 lead to the intermediate result

V D = V456
123

+ V564
231

+ V645
312

+ V465
132

+ V654
321

+ V546
213

, (42)

and then the full potential comprising all 36 Wick contractions is obtained by applying to V D further (sign-weighted)
spin and particle exchanges (see Eq. (12) of Ref. [22]):

V = V D + P
(σ)
23 P

(σ)
13

(
V D
)

4→5
5→6
6→4

+ P
(σ)
23 P

(σ)
12

(
V D
)

4→6
5→4
6→5

− P (σ)
23

(
V D
)

4→4
5→6
6→5

− P (σ)
13

(
V D
)

4→6
5→5
6→4

− P (σ)
12

(
V D
)

4→5
5→4
6→6

. (43)

After summing over all intermediate decuplet baryons B∗, one compares the decuplet expressions with the full three-
body contact potential for all possible combinations of six baryons. The following results are found for the 18 LECs
in the six-baryon contact Lagrangian (see Eq. (14) of Ref. [22]):

C1 = −7(H1 +H2)2

24∆
,

C2 = −H
2
1 + 18H1H2 + 9H2

2

36∆
,

C3 = −19H2
1 + 30H1H2 + 15H2

2

36∆
,

C4 =
H2

1 + 18H1H2 + 9H2
2

72∆
,

C5 =
5(H1 +H2)2

8∆
,

C6 =
17H2

1 + 18H1H2 − 15H2
2

72∆
,

C7 =
7H2

1 + 6H1H2 − 9H2
2

108∆
,

C8 =
25H2

1 + 42H1H2 − 3H2
2

108∆
,

C9 =
H2

1 + 18H1H2 + 9H2
2

72∆
,

C10 = −25H2
1 + 50H1H2 + 9H2

2

72∆
,

C11 = −23(H1 +H2)2

72∆
,

C12 = −13H2
1 + 42H1H2 + 21H2

2

108∆
,

C13 = −H
2
1 + 10H1H2 + 5H2

2

36∆
,

C14 =
5(H1 +H2)2

24∆
,

C15 = −H
2
1 − 9H2

2

27∆
,

C16 = −11H2
1 + 18H1H2 + 3H2

2

54∆
,

C17 = −2H1(H1 + 2H2)

9∆
,

C18 =
2H2

1

27∆
. (44)

Again, from dimensional scaling arguments the constants Ci should be of order O(1/(Λχf
4
0 )). In the nucleonic

sector the corresponding constant E = 2(C4 − C9) is commonly denoted by E = cE/(Λχf
4
0 ), where cE is of order 1.

The decuplet saturation mechanism promotes the constants Ci to O(1/(∆f4
0 )).

In order to elucidate the pattern of decuplet saturation, we display in Tab. IV the channels which are active in
producing 3BFs for the S = 0 and −1 sectors. The decuplet resonances which occur as intermediate states are
indicated explicitly for the three classes of three-body forces. The transitions for strangeness −1 are mostly saturated
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transition type B∗

NNN → NNN ππ ∆

ΛNN → ΛNN ππ Σ∗

ΛNN → ΛNN πK Σ∗

ΛNN → ΛNN KK Σ∗

ΛNN → ΛNN π Σ∗

ΛNN → ΛNN K Σ∗

ΛNN → ΛNN ct Σ∗

ΛNN ↔ ΣNN ππ ∆,Σ∗

ΛNN ↔ ΣNN πK ∆,Σ∗

ΛNN ↔ ΣNN πη Σ∗

ΛNN ↔ ΣNN KK Σ∗

ΛNN ↔ ΣNN Kη Σ∗

ΛNN ↔ ΣNN π ∆,Σ∗

ΛNN ↔ ΣNN K Σ∗

ΛNN ↔ ΣNN η Σ∗

ΛNN ↔ ΣNN ct Σ∗

transition type B∗

ΣNN → ΣNN ππ ∆,Σ∗

ΣNN → ΣNN πK ∆,Σ∗

ΣNN → ΣNN πη Σ∗

ΣNN → ΣNN KK Σ∗

ΣNN → ΣNN Kη Σ∗

ΣNN → ΣNN ηη Σ∗

ΣNN → ΣNN π ∆,Σ∗

ΣNN → ΣNN K Σ∗

ΣNN → ΣNN η Σ∗

ΣNN → ΣNN ct Σ∗

Table IV. Enhanced three-body interactions through decuplet saturation for strangeness 0 and −1 systems, with classes of
diagrams as specified: two-meson exchange, one-meson exchange and contact interaction (ct).

by the Σ∗(1385) resonance alone. However, for some transitions involving pions also the ∆(1232) isobar contributes.
Resonances with higher strangeness can not be reached. Note that in contrast to the NNN interaction, for S = −1
the one-meson exchange and the contact 3BF also receive contributions from the excitation of decuplet baryons.

C. Lambda-nucleon-nucleon in decuplet approximation

Using the LECs derived from decuplet saturation, this fixes the constants of the ΛNN (contact, one-pion and
two-pion exchange) three-body interaction introduced in Ref. [22]. These particular linear combinations of coefficients
read

C ′1 = C ′3 =
H ′2

72∆
, C ′2 = 0 ,

D′1 = 0 , D′2 =
2CH ′

9∆
,

3b0 + bD = 0 , 2b2 + 3b4 = − C2

∆
, (45)

and they depend only on the combination H ′ = H1 + 3H2 of the B∗BBB contact couplings. Notably, the constants
C ′i of the ΛNN contact interaction are positive independently of the values H1 and H2.

With the above values estimated via decuplet saturation, the three components of the density-dependent Λn po-
tential in a nuclear medium with densities ρp and ρn take the following simple forms

V med,ππ
Λn =

C2g2
A

12π2f4
0 ∆

{
1

4

[8
3

(knf
3 + 2kpf

3
)− 4(q2 + 2m2)Γ̃0(p)− 2q2Γ̃1(p) + (q2 + 2m2)2G̃0(p, q)

]
+

i

2
(~q × ~p ) · ~σ2

(
2Γ̃0(p) + 2Γ̃1(p)− (q2 + 2m2)(G̃0(p, q) + 2G̃1(p, q))

)}
, (46)

V med,π
Λn =

gACH
′

54π2f2
0 ∆

(
2(knf

3 + 2kpf
3
)− 3m2Γ̃0(p)

)
, (47)

V med,ct
Λn =

H ′2

18∆
(ρn + 2ρp) , (48)
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where the different topologies related to two-pion exchange ((1), (2a), (2b), (3)) and one-pion exchange ((4), (5a),
(5b)) have already been combined in V med,ππ and V med,π, respectively. The density and momentum dependent
functions Γ̃i(p) and G̃i(p, q) have been defined following Eq. (24). Note that since D′1 vanishes in decuplet saturation,
there remain only central and spin-orbit components for the ΛN in-medium potential.

D. In-medium ΣN interactions in decuplet approximation

Other interesting parts of the in-medium potentials derived in Sec. II for the strangeness S = −1 sector are those
involving ΣN states. Here we write down the explicit formulas for the corresponding (transition) potentials in isospin-
symmetric nuclear matter, with density ρ = 2ρn = 2ρp = 2k3

f/(3π
2), employing the decuplet approximation. In such a

medium isospin symmetry still holds and it is sufficient to consider the potentials for the three independent transitions
ΛN → ΣN with isospin 1/2, ΣN → ΣN with isospin 1/2, and ΣN → ΣN with isospin 3/2. The transformation
from the particle basis to the isospin basis is performed as in Eq. (19) of Ref. [22]. For more complicated cases such
as hyperon-nucleon interactions in isospin-asymmetric nuclear matter or even in hypernuclear matter, one can use
straightforwardly the general potential formulas given in Sec. II together with an automated calculation of the SU(3)
coefficients, following the definitions in this work and in Ref. [22].

We restrict ourselves again to two-pion exchange, one-pion exchange and contact contributions to the in-medium
potentials. Consequently all exchange-type contributions vanish, V med,1,E = V med,2a,E = V med,2b,E = V med,3,E =
V med,4,E = 0, since these involve strangeness transfer from one baryon to the other.

After summing the contributions from the proton and neutron Fermi seas, the non-vanishing in-medium potentials
for the three transitions ΛN → ΣN , ΣN → ΣN (I = 1/2), and ΣN → ΣN (I = 3/2), take the following form:

V med,1,D
ΛN→ΣN =

D

2F
V med,1,D

ΣN,1/2 = −D
F
V med,1,D

ΣN,3/2 =
8ρC2DgA

9∆f4
0

q2 ~σ1 · ~q ~σ2 · ~q
(q2 +m2

π)2
, (49)

V med,2a+b,D
ΛN→ΣN =

D

2F
V med,2a+b,D

ΣN,1/2 = −D
F
V med,2a+b,D

ΣN,3/2

= − C
2DgA

9∆π2f4
0

~σ1 · ~q ~σ2 · ~q
q2 +m2

π

{
2
[2

3
k3
f −m2

πΓ0(p, kf ) + Γ2(p, kf )
]

+
q2

2

[
Γ0(p, kf ) + 2Γ1(p, kf ) + Γ3(p, kf )

]}
, (50)

V med,3,D
ΛN→ΣN = − C2g2

A

12∆π2f4
0

{
G2(p, q, kf )(q2~σ1 · ~σ2 − ~σ1 · ~q ~σ2 · ~q )

+
[
G0(p, q, kf ) + 4G1(p, q, kf ) + 4G3(p, q, kf )

]
(~q × ~p ) · ~σ1 (~q × ~p ) · ~σ2

− i

2
(~q × ~p ) · ~σ1

[(
2Γ0(p, kf ) + 2Γ1(p, kf )− (q2 + 2m2

π)
(
G0(p, q, kf ) + 2G1(p, q, kf )

))]}
,

V med,3,D
ΣN,1/2 =

C2g2
A

36∆π2f4
0

{
G2(p, q, kf )(q2~σ1 · ~σ2 − ~σ1 · ~q ~σ2 · ~q )

+
1

2

[8

3
k3
f − 4(q2 + 2m2

π)Γ0(p, kf )− 2q2Γ1(p, kf ) + (q2 + 2m2
π)2G0(p, q, kf )

]
+
[
G0(p, q, kf ) + 4G1(p, q, kf ) + 4G3(p, q, kf )

]
(~q × ~p ) · ~σ1 (~q × ~p ) · ~σ2

− i

2
(~q × ~p ) · (~σ1 − 2~σ2)

[
2Γ0(p, kf ) + 2Γ1(p, kf )− (q2 + 2m2

π)
(
G0(p, q, kf ) + 2G1(p, q, kf )

)]}
,

V med,3,D
ΣN,3/2 =

C2g2
A

72∆π2f4
0

{
−G2(p, q, kf )(q2~σ1 · ~σ2 − ~σ1 · ~q ~σ2 · ~q )

+
8

3
k3
f − 4(q2 + 2m2

π)Γ0(p, kf )− 2q2Γ1(p, kf ) + (q2 + 2m2
π)2G0(p, q, kf )

−
[
G0(p, q, kf ) + 4G1(p, q, kf ) + 4G3(p, q, kf )

]
(~q × ~p ) · ~σ1 (~q × ~p ) · ~σ2

+
i

2
(~q × ~p ) · (~σ1 + 4~σ2)

[
2Γ0(p, kf ) + 2Γ1(p, kf )− (q2 + 2m2

π)
(
G0(p, q, kf ) + 2G1(p, q, kf )

)]}
, (51)
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V med,4,D
ΛN→ΣN =

2ρH2CgA
3f2

0 ∆

~σ1 · ~q ~σ2 · ~q
q2 +m2

π

,

V med,4,D
ΣN,1/2 =

4ρCgA(2H1 +H2)

9f2
0 ∆

~σ1 · ~q ~σ2 · ~q
q2 +m2

π

,

V med,4,D
ΣN,3/2 = −2ρCgA(2H1 +H2)

9f2
0 ∆

~σ1 · ~q ~σ2 · ~q
q2 +m2

π

, (52)

V med,5a+b
ΛN→ΣN =

CgA
36π2f2

0 ∆

{(
3(H1 −H2)− 4(H1 + 3H2)~σ1 · ~σ2

)(2

3
k3
f −m2

πΓ0(p, kf )
)

+ 4H1Γ2(p, kf )~σ1 · ~σ2

+
(1

4
(19H1 + 9H2)~σ1 · ~p ′ ~σ2 · ~p ′ −

3

4
(H1 + 3H2)~σ1 · ~p ~σ2 · ~p

)(
Γ0(p, kf ) + 2Γ1(p, kf ) + Γ3(p, kf )

)}
,

V med,5a+b
ΣN,1/2 =

CgA
36π2f2

0 ∆

{
(8H2 − 2(3H1 +H2)~σ1 · ~σ2)

(2

3
kf

3 −m2
πΓ0(p, kf )

)
− 2(5H1 + 3H2)Γ2(p, kf )~σ1 · ~σ2

− (5H1 + 3H2)
(
~σ1 · ~p ′ ~σ2 · ~p ′ + ~σ1 · ~p ~σ2 · ~p

)(
Γ0(p, kf ) + 2Γ1(p, kf ) + Γ3(p, kf )

)}
,

V med,5a+b
ΣN,3/2 =

CgA
36π2f2

0 ∆

{
(3H1 +H2) (2 + ~σ1 · ~σ2)

(2

3
kf

3 −m2
πΓ0(p, kf )

)
+ (5H1 + 3H2)Γ2(p, kf )~σ1 · ~σ2

+
1

2
(5H1 + 3H2)

(
~σ1 · ~p ′ ~σ2 · ~p ′ + ~σ1 · ~p ~σ2 · ~p

)(
Γ0(p, kf ) + 2Γ1(p, kf ) + Γ3(p, kf )

)}
, (53)

V med,6
ΛN→ΣN =

ρ

6∆

(
1

2
(H2

1 + 2H1H2 − 3H2
2 )− 1

3
(H2

1 + 4H1H2 + 3H2
2 )~σ1 · ~σ2

)
,

V med,6
ΣN,1/2 =

ρ

6∆

(
−1

2
(H2

1 − 2H1H2 − 7H2
2 ) +

1

3
(H1 +H2)2~σ1 · ~σ2

)
,

V med,6
ΣN,3/2 =

ρ

6∆

(
1

2
(5H2

1 + 2H1H2 +H2
2 )− 1

6
(H1 +H2)2~σ1 · ~σ2

)
. (54)

Note that the topologies (2a) and (2b), and (5a) and (5b), have already been combined. One observes that these in-
medium potentials exhibit a much richer spin-structure than the one for ΛN → ΛN . Furthermore, the two constants
H1 and H2 occur now in various combinations.

IV. NUMERICAL RESULTS AND DISCUSSION

Selected numerical results are now presented for the in-medium ΛN interaction based on the three contributions
derived in the previous section. We restrict ourselves to the Λn potential in isospin-symmetric nuclear matter and
in pure neutron matter. Obviously, the relation V med

Λp = V med
Λn holds generally in isospin-symmetric nuclear matter.

However, in decuplet approximation one deduces from Eqs. (46), (47) and (48) for pure neutron matter the remarkable
relation V med

Λp = 2V med
Λn . For the presentation we follow closely Ref. [13] for the NN case and show partial-wave

projected momentum-space potentials (in units of fm, including a nucleon mass factor MN ).
In Ref. [13] the low-momentum potential Vlow k has been used for the free NN interaction. It is obtained from

the bare chiral NN potential at order N3LO through evolution down to a low-momentum scale via renormalization
group techniques [44, 45]. At the chosen scale of Λlow k = 2.1 fm−1 [13] basically all available high-precision NN
potentials converge to a nearly unique low-momentum potential. For the ΛN case we do not have such an interaction
at our disposal. Though there are pertinent results in the literature [46–48], it has to be said that there is no unique
low-momentum potential in the ΛN case because the relevant ΛN phase shifts are not reliably known at present.
Different Y N potentials, fitted to the available scattering data, predict different phase shifts and thus yield different
low-momentum potentials. For the present exploratory study a bare Y N potential is used and we take the NLO chiral
interaction from [24] with the lowest cutoff Λ = 450 MeV, close to Λlow k. We expect that this bare interaction should
be not too far from a hypothetical “universal potential”, at least for partial waves such as 1S0, 3P0, etc., i.e., those
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Figure 10. Modifications of the (on-shell) Λn potential (solid/black line) due to the density-dependent contributions resulting
from the two-pion exchange (dashed/red line), one-pion exchange (dash-dotted/blue lines) and contact (dotted/green line)
three-body forces. The Y N potential at NLO in chiral EFT with cutoff Λ = 450 MeV [24] is used as basis. The two curves for
one-pion exchange result from different signs of the LEC H ′, see text. The calculations are for symmetric nuclear matter with
ρ = ρ0 = 0.166 fm−3.
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Figure 11. Modifications of the (on-shell) Λn potential (solid/black line) due to the density-dependent contributions resulting
from three-body forces for selected P -waves. Same description as in Fig. 10.
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without angular momentum mixing. The actual evaluation of Vlow k for our LO Y N potential reported in Ref. [48]
supports this expectation.

In Figs. 10 and 11 the contributions of the density-dependent in-medium Λn interaction to the free space Λn potential
in low partial waves are displayed for isospin-symmetric nuclear matter at saturation density, ρ0 = 0.17 fm−3. The
solid line represents the bare Λn potential while the dashed, dash-dotted, and dotted lines show the modifications due
to the two-pion exchange (ππ), one-pion exchange (π) and the contact (ct) three-body force, respectively.

Decuplet saturation fixes the parameters of the ππ contribution uniquely so that the corresponding result can be
considered as a prediction. The two other contributions to the density-dependent effective Λn interaction depend on
the unknown LEC H ′. In the absence of more detailed information we assume that H ′ ≈ ±1/f2

0 , in line with general
dimensional scaling arguments [42, 43]. This is meant to be just a rough estimate. One knows from the nucleonic
case that the values of the LECs involved in the three-nucleon force (cD and cE) depend strongly on the chosen scale
and/or regularization scheme [43, 49]. In that case the LECs can be fixed by considering few-body observables such
as 3N or 4N binding energies, Gamow-Teller matrix elements, etc. Whether a similar strategy can be followed for
the hyperon sector by considering say the 3

ΛH and 4
ΛH ( 4

ΛHe) binding energies remains to be examined [50].
In any case, we can already draw some interesting qualitative conclusions. First, two-pion exchange 3BFs lead to

repulsive contributions in all partial waves. Moreover, the contact term also gives rise to overall repulsive contribu-
tions, independent of the uncertainty associated with its actual value. Here the decuplet saturation fixes the sign
of the relevant constants (C ′i) uniquely, as already mentioned in the preceding section. Only the one-pion exchange
contribution is sensitive to the sign of H ′, and correspondingly it generates a repulsive or attractive density-dependent
Λn interaction, see the two dash-dotted curves in Fig. 10. The particular choice H ′ = |1/f2

0 | leads to results of compa-
rable magnitude for all three contributions. For a somewhat larger value of the LEC H ′ the contact interaction would
dominate the density-dependent Λn interaction. H ′ enters quadratically in the corresponding potential V med,ct

ΛN , cf.
Eq. (48), so that an increase of H ′ by a factor of two (which is likewise in line with dimensional arguments) would
enhance the corresponding contribution by a factor 4.

Since V med,ct
ΛN and V med,π

ΛN do not depend on the momentum transfer q they contribute only to ΛN S-waves. Thus
the uncertainty with regard to H ′ does not affect the density-dependent interaction in the P waves (and other higher
partial waves). With regard to our P -wave results, shown in Fig. 11, it is of particular interest that V med,ππ

ΛN provides
additional and repulsive contributions to the antisymmetric spin-orbit force, see the 1P1-3P1 transition amplitude. As
argued in Ref. [51–53] based on G-matrix calculations of hyperons in nuclear matter, a sizable antisymmetric spin-
orbit force that can counterbalance the spin-orbit force generated by the basic interaction is one of the possibilities
to achieve a weak Λ-nucleus spin-orbit potential as indicated by experimental results for hypernuclear spectra [54].

Before comparing the density-dependent effects for ΛN with those derived for NN in Ref. [13], it should be noted
that several topologies are absent in the former because the ΛΛπ vertex does not exist. This concerns specifically
the one-pion exchange term with a Pauli blocked in-medium pion self-energy and vertex corrections to the one-pion
exchange (topologies (1) and (2)) which provide the dominant density-dependent effects in the NN case for on-shell
momenta around 1 . p . 2 fm−1, see Figs. 4 and 8 of Ref. [13]. With regard to the density-dependent corrections
from the 3BF that appear in NN as well as in ΛN it turns out that they are of comparable order of magnitude. For
example, 3BF effects driven by two-pion exchange (topology (3)) lead to modifications by roughly 40 % in case of NN
and by around 20 % for ΛN at ρ = ρ0 if we take the S-wave results at p = 0 fm−1 as measure. A similar behavior is
seen for the effect of the contact term (topology (6)). Here one has to keep in mind that the relevant LEC for ΛN , H ′,
has only been roughly estimated using scale arguments. In particular, as has been demonstrated above, in an EFT
that includes decuplet baryons as effective degrees of freedom, the 3BF due to a contact interaction emerges already
at NLO for the ΛNN system whereas in case of NNN the corresponding 3BF appears only at NNLO. In any case,
the density-dependent corrections in 1S0 and 3S1 due to two-pion exchange and the contact term are of the same sign
(repulsive) for NN and ΛN . Those from one-pion exchange are attractive for NN and are likewise attractive for ΛN
for the choice of H ′ being negative.

Figs. 12 and 13 demonstrate how the sum of all terms in the density-dependent Λn interaction varies with the
density in symmetric nuclear matter. Results for ρ = ρ0, 2 ρ0, and 3 ρ0 are displayed. For the choice H ′ = +1/f2

0

all three contributions add up and give rise to a sizable density dependence, see the left-hand parts of Figs. 12
and 13. The density dependence is roughly linear in ρ within the considered range. For H ′ = −1/f2

0 there is a
destructive interference between the three contributions so that here the overall density dependence turns out to be
more moderate. Finally, in Figs. 14 and 15 results for pure neutron matter are presented, again for ρ = ρ0, 2 ρ0, and
3 ρ0. One can see that the resulting density dependence is somewhat smaller than what was found for symmetric
nuclear matter. However, one still finds substantial repulsion in neutron matter at moderately high densities. This
result is very encouraging in view of neutron star matter and the hyperon puzzle. In combination with repulsive effects
from the momentum-dependent two-body ΛN interaction at large Fermi momentum, a repulsive hyperon-nucleon-
nucleon three-body interaction can potentially play a key role in solving the hyperon puzzle. It is therefore compelling
to employ this effective interaction in neutron star calculations.
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Figure 12. Modifications of the (on-shell) Λn potential (solid/black line) due to the combined density-dependent contributions
resulting from the NLO three-body force. The calculations are for symmetric nuclear matter with ρ = ρ0 (dash-dotted/green),
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Figure 13. Modifications of the (on-shell) Λn potential (solid/black line) due to the combined density-dependent contributions
resulting from the NLO three-body force for selected P -waves. Same description as in Fig. 12.
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Figure 14. Modifications of the (on-shell) Λn potential (solid/black line) due to the combined density-dependent contributions
resulting from the NLO three-body force. The calculations are for pure neutron matter with ρ = ρ0 (dash-dotted/green), 2 ρ0
(dash-double dotted/blue), and 3 ρ0 (dotted/red). The Y N potential at NLO in chiral EFT with cutoff Λ = 450 MeV [24] is
used as basis (solid curves). The left panel shows results for H ′ = +1/f2
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π .
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Figure 15. Modifications of the (on-shell) Λn potential (solid/black line) due to the combined density-dependent contributions
resulting from the NLO three-body force for selected P -waves. Same description as in Fig. 14.



21

V. SUMMARY AND OUTLOOK

In this work we have presented a systematic construction of density-dependent in-medium two-baryon interactions
that follow from the leading chiral three-baryon forces. These effective potentials should be particularly useful in
calculations of many-body systems where an exact treatment of the chiral three-baryon forces would otherwise be
computationally prohibitive. Given the systematic derivation of 3BFs within SU(3) chiral effective field theory their
application will hopefully shed light on the importance of 3BFs in strangeness nuclear physics. Our derivation is
general and applies in particular to the S = −1 sector involving ΛN , ΣN coupled channels. As a concrete example,
we have presented explicit expressions for the density-dependent ΛN effective interaction which can be implemented
in calculations of heavy hypernuclei and (hyper)nuclear matter. In view of these possible applications we have also
supplied the explicit expressions for the in-medium ΣN potentials in isospin-symmetric nuclear matter.

In order to constrain the number of occurring parameters, we have estimated the low-energy constants of the leading
chiral 3BFs by decuplet saturation. The resulting three-body forces, depending only on two free parameters H1 and
H2, can be readily employed in investigations of in-medium properties of the hyperon-nucleon interaction as well as in
studies of light hypernuclei within microscopic approaches like the Faddeev-Yakubovsky formalism [35] or the no-core
shell model [55, 56].

Utilizing these 3BFs we have investigated the medium modification of the ΛN interaction induced by chiral ΛNN
three-body forces in symmetric nuclear matter and pure neutron matter. In particular, we have evaluated numerically
the contributions to the in-medium Λn potential related to two-pion exchange, one-pion exchange and contact terms
in the decuplet approximation. These results indicate a substantial repulsion arising from the ΛNN 3BF at higher
densities. This finding supports scenarios for solving the hyperon puzzle in neutron star matter through strongly
repulsive effects from hyperon-nucleon-nucleon forces. Another interesting feature is that the medium corrections
provide a repulsive contribution to the antisymmetric spin-orbit force, as manifested in the 1P1-3P1 transition matrix
element. A sizable antisymmetric spin-orbit force is welcome because it can counterbalance the spin-orbit force
generated by the basic two-body interaction and, thereby, leads to a rather weak Λ-nucleus spin-orbit potential as
indicated by hypernuclear spectroscopy.
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Appendix A: In-medium nucleon-nucleon interaction from chiral three-nucleon forces

Here, we present the results for the effective NN interaction in isospin-symmetric nuclear matter of density ρ =
2k3
f/(3π

2). The medium corrections from protons and neutrons in the Fermi sea are summed up, and it is advantageous
to present the in-medium NN potential in terms of isospin operators ~τ1,2.

The diagram of topology (1) in Fig. 3 (Pauli-blocked pion self energy) leads to the following expression:

V med,1,D+E
NN =

g2
Aρ

2f4
0

[
~τ1 · ~τ2

~σ1 · ~q ~σ2 · ~q
(m2

π + q2)2
(2c1m

2
π + c3q

2)− P (σ)P (τ)~τ1 · ~τ2
~σ1 · ~k ~σ2 · ~k
(m2

π + k2)2
(2c1m

2
π + c3k

2)

]
, (A1)

where P (σ) = 1
2 (1+~σ1 ·~σ2) denotes the spin-exchange operator and P (τ) = 1

2 (1+~τ1 ·~τ2) the isospin-exchange operator.
Note that the second term is the Fierz transform of the first term. This fermion-exchange contribution has not been
presented explicitly in Ref. [13]. The sum of the topologies (2a) and (2b) leads to the result

V med,2a+b,D
NN =

g2
A

16π2f4
0

~τ1 · ~τ2
~σ1 · ~q ~σ2 · ~q
q2 +m2

π

{
8c4
[2
3
k3
f −m2

πΓ0(p, kf )
]

− 8c1m
2
π

[
Γ0(p, kf ) + Γ1(p, kf )

]
− 8(c3 + c4)Γ2(p, kf )

− 4(c3 + c4)
q2

2

[
Γ0(p, kf ) + 2Γ1(p, kf ) + Γ3(p, kf )

]}
, (A2)



22

where the associated exchange part is given by V med,2a+b,E
NN = −P (σ)P (τ)(V med,2a+b,D

NN |~q→−~k). The diagram of topol-
ogy (3) (Pauli-blocked two-pion exchange) leads to the expression

V med,3,D
NN =

g2
A

16π2f4
0

{
− 12c1m

2
π

[
2Γ0(p, kf )− (q2 + 2m2

π)G0(p, q, kf )
]

− 3c3
[8
3
k3
f − 4(q2 + 2m2

π)Γ0(p, kf )− 2q2Γ1(p, kf ) + (q2 + 2m2
π)2G0(p, q, kf )

]
+ 4c4~τ1 · ~τ2

[
(G0(p, q, kf ) + 4G1(p, q, kf ) + 4G3(p, q, kf )

]
(~q × ~p ) · ~σ1 (~q × ~p ) · ~σ2

+ 4c4~τ1 · ~τ2G2(p, q, kf )(q2~σ1 · ~σ2 − ~σ1 · ~q ~σ2 · ~q )

+
i

2
(~q × ~p ) · (~σ1 + ~σ2)

[
− 24c1m

2
π

(
G0(p, q, kf ) + 2G1(p, q, kf )

)
−
(
12c3 + 4c4~τ1 · ~τ2

)1

2

(
2Γ0(p, kf ) + 2Γ1(p, kf )

− (q2 + 2m2
π)
(
G0(p, q, kf ) + 2G1(p, q, kf )

))]}
, (A3)

which involves central, spin-spin, tensor, spin-orbit and quadratic spin-orbit components. The associated exchange
part is given by V med,3,E

NN = −P (σ)P (τ)(V med,3,D
NN |~q→−~k). The in-medium NN potential due to topology (4) reads:

V med,4,D+E
NN = −gADρ

8f2
0

[
~τ1 · ~τ2

~σ1 · ~q ~σ2 · ~q
q2 +m2

π

− P (σ)P (τ)~τ1 · ~τ2
~σ1 · ~k ~σ2 · ~k
k2 +m2

π

]
. (A4)

The sum of the two topologies (5a) and (5b) leads to an (already antisymmetrized) in-medium NN potential of the
form1

V med,5a+b
NN =

DgA
4π2f2

0

{(3

4
− 1

4
~τ1 · ~τ2 −

1

2
~τ1 · ~τ2 ~σ1 · ~σ2

)(2

3
k3
f −m2

πΓ0(p, kf )
)

− 3

4
(1− ~τ1 · ~τ2)

[~σ1 · ~p ~σ2 · ~p+ ~σ1 · ~p ′ ~σ2 · ~p ′

2

(
Γ0(p, kf ) + 2Γ1(p, kf ) + Γ3(p, kf )

)
+ ~σ1 · ~σ2Γ2(p, kf )

]}
. (A5)

In fact, this result is equal to the antisymmetrized expression of Ref. [13]. This can be shown by multiplying Eq. (24)
in Ref. [13] with 1− P (σ)P (τ) and by employing the identity: −9Γ2(p, kf )− 3p2(Γ0(p, kf ) + 2Γ1(p, kf ) + Γ3(p, kf )) +
2k3
f − 3m2Γ0(p, kf ) = 0. Finally, the diagram of topology (6) (contact interaction) leads to the contribution:

V med,6
NN = −3

2
Eρ (1− P (σ)P (τ)) . (A6)

This is obviously in agreement with the antisymmetrized expression in Eq. (25) of Ref. [13].
In summary all in-medium potentials agree with the antisymmetrized results given in Sec. III.A. of Ref. [13]. This

consistency serves as a non-trivial check of our calculation, which is based on a different procedure to construct the
in-medium potentials.

Appendix B: Construction of the minimal B∗BBB Lagrangian

In this appendix we present the derivation of the minimal non-relativistic B∗BBB contact Lagrangian, involving
three octet baryons and one decuplet baryon. An overcomplete set of such contact terms in the non-relativistic limit
reads

L =

7∑
κ=1

cκ
3∑

a,b,c,d,
e,f,g,h,i=1

θκabcdefghi
[ (
T̄abc~S

†Bde

)
·
(
B̄fg~σBhi

)
+
(
B̄ed~S Tabc

)
·
(
B̄ih~σBgf

) ]
, (B1)

1 Note that the on-shell relation ~σ1 · ~p ~σ2 · ~p+~σ1 · ~p ′ ~σ2 · ~p ′ =
(
2p2 − q2

2

)
~σ1 ·~σ2+

(
1− 2p2

q2

)
~σ1 ·~q ~σ2 ·~q− 2

q2
~σ1 · (~q× ~p ) ~σ2 · (~q× ~p ) holds.
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with seven different (SU(3) symmetric) flavor structures θκ,

θ1
abcdefghi = εaegδbdδchδfi ,

θ2
abcdefghi = εaegδbfδchδdi ,

θ3
abcdefghi = εaeiδbdδcfδhg ,

θ4
abcdefghi = εaeiδbhδcfδdg ,

θ5
abcdefghi = εagiδbfδcdδeh ,

θ6
abcdefghi = εagiδbhδcdδef ,

θ7
abcdefghi = εegiδadδbfδch , (B2)

and seven associated LECs cκ. In the particle basis the contact Lagrangian Eq. (B1) transforms to

L =

7∑
κ=1

cκ
∑
i,j,k,l

Nκ
B∗i BjBkBl

[ (
B̄∗i ~S

†Bj

)
·
(
B̄k~σBl

)
+
(
B̄j ~S B

∗
i

)
·
(
B̄l~σBk

) ]
, (B3)

where i runs now over decuplet baryons, j, k, l run over octet baryons in the particle basis and the N ’s are certain
SU(3) coefficients.

In order to get a minimal set of terms for this contact Lagrangian, we study the processes BB → B∗B in more
detail. The corresponding transition matrix elements are derived from the two diagrams

V =

B∗ B3

B1 B2

−

B∗ B3

B2 B1

· P (σ) , (B4)

where the spin exchange operator P (σ) = 1
2 (1+~σ1 ·~σ2) acts on the initial state. Making use of the (explicitly verified)

identity ~S†1 · ~σ2 P
(σ) = ~S†1 · ~σ2, one obtains the following expression for the transition matrix elements:

V = −~S†1 · ~σ2

7∑
κ=1

cκ
(
Nκ
B∗B1B3B2

−Nκ
B∗B2B3B1

)
. (B5)

We can obtain the minimal effective Lagrangian by eliminating redundant terms until the rank of the matrix formed
by all transitions matches the number of terms in the Lagrangian, as we have done in Ref. [22]. By choosing the
two independent flavor structures θ1 and θ2 one arives at the minimal non-relativistic B∗BBB Lagrangian written in
Eq. (31), with two low-energy constants H1 and H2. This number of independent constants can be easily understood
through group theoretical considerations of the transition BB → B∗B. In flavor space the two initial octet baryons
form the tensor product 8⊗ 8, and in spin space they form the product 2⊗ 2. These decompose into the irreducible
representations as follows:

8⊗ 8 = 27⊕ 8s ⊕ 1︸ ︷︷ ︸
symmetric

⊕10⊕ 10∗ ⊕ 8a︸ ︷︷ ︸
antisymmetric

, 2⊗ 2 = 1a ⊕ 3s . (B6)

Similarly, one finds for the final state with a decuplet and an octet baryon, the following decomposition in flavor and
spin space

10⊗ 8 = 35⊕ 27⊕ 10⊕ 8 , 4⊗ 2 = 3⊕ 5 . (B7)

At leading order only S-waves are involved and transitions can only occur between irreducible (flavor and spin)
representations of the same type. This implies, that only transitions in the spin-triplet representation 3 are allowed.
Due to the Pauli principle, the symmetric 3 in spin space must combine with the antisymmetric flavor representations
10,10∗,8a (in the initial state). Out of these only 10 and 8a possess a counterpart in the final state flavor space.
The number of two allowed transitions between irreducible representations corresponds exactly to the number of two
LECs in the minimal Lagrangian. As a consistency check one finds, that the spin-operator ~S †1 ·~σ2 has a non-vanishing
matrix element only for the transition 3S1 → 3S1.
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Another interesting observation can be made from Eqs. (B6) and (B7). When restricting to NN states, only the
flavor representations 27 and 10∗ are involved (cf. for example Ref. [23]). But these representations combine either
with the wrong total spin, or have no counterpart in the final state. Hence, NN → ∆N transitions in S-waves are
forbidden due to the Pauli principle.
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