001     820998
005     20210129224722.0
024 7 _ |a 10.1016/j.soilbio.2015.11.016
|2 doi
024 7 _ |a 0038-0717
|2 ISSN
024 7 _ |a 1879-3428
|2 ISSN
024 7 _ |a 2128/13196
|2 Handle
024 7 _ |a WOS:000370094100016
|2 WOS
024 7 _ |a altmetric:4876390
|2 altmetric
037 _ _ |a FZJ-2016-06255
082 _ _ |a 570
100 1 _ |a Glanville, H. C.
|0 0000-0002-8192-6678
|b 0
|e Corresponding author
245 _ _ |a Combined use of empirical data and mathematical modelling to better estimate the microbial turnover of isotopically labelled carbon substrates in soil
260 _ _ |a Amsterdam [u.a.]
|c 2016
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1481623436_12796
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The flow of carbon (C) through soil is inherently complex due to the many thousands of different chemical transformations occurring simultaneously within the soil microbial community. The accurate modelling of this C flow therefore represents a major challenge. In response to this, isotopic tracers (e.g. 13C, 14C) are commonly used to experimentally parameterise models describing the fate and residence time of individual C compounds within soil. In this study, we critically evaluated the combined use of experimental 14C labelling and mathematical modelling to estimate C turnover times in soil. We applied 14C-labelled alanine and glucose to an agricultural soil and simultaneously measured their loss from soil solution alongside the rate of microbial C immobilization and mineralization. Our results revealed that chloroform fumigation-extraction (CFE) cannot be used to reliably quantify the amount of isotopically labelled 13C/14C immobilised by the microbial biomass. This is due to uncertainty in the extraction efficiency values (kec) within the CFE methodology which are both substrate and incubation time dependent. Further, the traditional mineralization approach (i.e. measuring 14/13CO2 evolution) provided a poor estimate of substrate loss from soil solution and mainly reflected rates of internal microbial C metabolism after substrate uptake from the soil. Therefore, while isotope addition provides a simple mechanism for labelling the microbial biomass it provides limited information on the behaviour of the substrate itself. We used our experimental data to construct a new empirical model to describe the simultaneous flow of substrate-C between key C pools in soil. This model provided a superior estimate of microbial substrate use and microbial respiration flux in comparison to traditional first order kinetic modelling approaches. We also identify a range of fundamental problems associated with the modelling of isotopic-C in soil, including issues with variation in C partitioning within the community, model pool connectivity and variation in isotopic pool dilution, which make interpretation of any C isotopic flux data difficult. We conclude that while convenient, the use of isotopic data (13C, 14C, 15N) has many potential pitfalls necessitating a critical evaluation of both past and future studies.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hill, P. W.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schnepf, A.
|0 P:(DE-Juel1)157922
|b 2
|u fzj
700 1 _ |a Oburger, E.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Jones, D. L.
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1016/j.soilbio.2015.11.016
|g Vol. 94, p. 154 - 168
|0 PERI:(DE-600)1498740-5
|p 154 - 168
|t Soil biology & biochemistry
|v 94
|y 2016
|x 0038-0717
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/820998/files/1-s2.0-S0038071715004095-main.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/820998/files/1-s2.0-S0038071715004095-main.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/820998/files/1-s2.0-S0038071715004095-main.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/820998/files/1-s2.0-S0038071715004095-main.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/820998/files/1-s2.0-S0038071715004095-main.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/820998/files/1-s2.0-S0038071715004095-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:820998
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)157922
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOIL BIOL BIOCHEM : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21