000821019 001__ 821019
000821019 005__ 20240619091217.0
000821019 0247_ $$2doi$$a10.1021/acs.macromol.6b00978
000821019 0247_ $$2ISSN$$a0024-9297
000821019 0247_ $$2ISSN$$a1520-5835
000821019 0247_ $$2Handle$$a2128/13069
000821019 0247_ $$2WOS$$aWOS:000381320300039
000821019 037__ $$aFZJ-2016-06276
000821019 082__ $$a540
000821019 1001_ $$0P:(DE-Juel1)162139$$aStaropoli, Mariapaola$$b0$$eCorresponding author$$ufzj
000821019 245__ $$aHydrogen Bonding in a Reversible Comb Polymer Architecture: A Microscopic and Macroscopic Investigation
000821019 260__ $$aWashington, DC$$bSoc.$$c2016
000821019 3367_ $$2DRIVER$$aarticle
000821019 3367_ $$2DataCite$$aOutput Types/Journal article
000821019 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1480488166_25250
000821019 3367_ $$2BibTeX$$aARTICLE
000821019 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000821019 3367_ $$00$$2EndNote$$aJournal Article
000821019 520__ $$aIn this work, an investigation of the hydrogen-bonding mechanism in a transiently branched comb-like polymer system in the melt is reported. The system under investigation consists of a polybutylene oxide (PBO)-based backbone, randomly functionalized with thymine (thy) groups, in combination with shorter PBO graft chains, end-functionalized with diaminotriazine (DAT) groups. The functional groups are able to associate through hydrogen bonding. The heterocomplementary association of these groups leads to the formation of a transiently branched comb-like polymer system. Since recently virtually exclusive heterocomplementary association could be observed in the supramolecular association of telechelically modified oligomeric PEG chains, here we aim to extend the supramolecular assembly mechanism toward branched structures. The present work combines small angle neutron scattering (SANS) experiments on a selectively labeled system with macroscopic dynamics measured in linear rheology response. The association of thy- and DAT-modified components was studied as a function of temperature and composition. The scattering function reveals the formation of a block copolymer and can be exclusively attributed to heterocomplementary association of the hydrogen-bonding groups. Scattering functions of nonfunctionalized blends are also reported as references and evidence the change in the microstructure induced by the heterocomplementary association. All scattering profiles were described by means of the random phase approximation (RPA) formalism from which the average aggregation number, i.e., comb arm functionality and the equilibrium association constant could be determined directly in the melt state as a function of temperature. On the other hand, rheological measurements were performed in the melt state to study the influence of the reversible bonds on the macroscopic dynamics of the polymer system. The rheology data are in good agreement with the SANS results and confirm the transient comb-like branched architecture. The supramolecular association exhibits characteristic bonding times of the groups in the order of 1 s at −25 °C and therefore makes the thy–DAT pair an ideal candidate for the development of responsive materials that combine permanent and transient linkages for novel applications and self-healing properties.
000821019 536__ $$0G:(DE-HGF)POF3-6215$$a6215 - Soft Matter, Health and Life Sciences (POF3-621)$$cPOF3-621$$fPOF III$$x0
000821019 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000821019 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x2
000821019 588__ $$aDataset connected to CrossRef
000821019 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000821019 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x1
000821019 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x2
000821019 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
000821019 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000821019 7001_ $$0P:(DE-Juel1)166570$$aRaba, Andreas$$b1$$ufzj
000821019 7001_ $$0P:(DE-HGF)0$$aHövelmann, Claas H.$$b2
000821019 7001_ $$0P:(DE-Juel1)130777$$aKrutyeva, Margarita$$b3$$ufzj
000821019 7001_ $$0P:(DE-Juel1)130501$$aAllgaier, J.$$b4$$ufzj
000821019 7001_ $$0P:(DE-Juel1)130507$$aAppavou, Marie-Sousai$$b5$$ufzj
000821019 7001_ $$0P:(DE-HGF)0$$aKeiderling, Uwe$$b6
000821019 7001_ $$0P:(DE-HGF)0$$aStadler, Florian J.$$b7
000821019 7001_ $$0P:(DE-Juel1)130902$$aPyckhout-Hintzen, Wim$$b8$$ufzj
000821019 7001_ $$0P:(DE-Juel1)131040$$aWischnewski, Andreas$$b9$$ufzj
000821019 7001_ $$0P:(DE-Juel1)130917$$aRichter, Dieter$$b10$$ufzj
000821019 773__ $$0PERI:(DE-600)1491942-4$$a10.1021/acs.macromol.6b00978$$gVol. 49, no. 15, p. 5692 - 5703$$n15$$p5692 - 5703$$tMacromolecules$$v49$$x1520-5835$$y2016
000821019 8564_ $$uhttps://juser.fz-juelich.de/record/821019/files/staropoli_Hydrogen%20Bonding%20in%20a%20Reversible%20Comb_last.pdf$$yOpenAccess
000821019 8564_ $$uhttps://juser.fz-juelich.de/record/821019/files/staropoli_Hydrogen%20Bonding%20in%20a%20Reversible%20Comb_last.gif?subformat=icon$$xicon$$yOpenAccess
000821019 8564_ $$uhttps://juser.fz-juelich.de/record/821019/files/staropoli_Hydrogen%20Bonding%20in%20a%20Reversible%20Comb_last.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000821019 8564_ $$uhttps://juser.fz-juelich.de/record/821019/files/staropoli_Hydrogen%20Bonding%20in%20a%20Reversible%20Comb_last.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000821019 8564_ $$uhttps://juser.fz-juelich.de/record/821019/files/staropoli_Hydrogen%20Bonding%20in%20a%20Reversible%20Comb_last.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000821019 8564_ $$uhttps://juser.fz-juelich.de/record/821019/files/staropoli_Hydrogen%20Bonding%20in%20a%20Reversible%20Comb_last.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000821019 909CO $$ooai:juser.fz-juelich.de:821019$$pdnbdelivery$$pVDB$$popen_access$$pdriver$$pVDB:MLZ$$popenaire
000821019 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162139$$aForschungszentrum Jülich$$b0$$kFZJ
000821019 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166570$$aForschungszentrum Jülich$$b1$$kFZJ
000821019 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130777$$aForschungszentrum Jülich$$b3$$kFZJ
000821019 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130501$$aForschungszentrum Jülich$$b4$$kFZJ
000821019 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130507$$aForschungszentrum Jülich$$b5$$kFZJ
000821019 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130902$$aForschungszentrum Jülich$$b8$$kFZJ
000821019 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131040$$aForschungszentrum Jülich$$b9$$kFZJ
000821019 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130917$$aForschungszentrum Jülich$$b10$$kFZJ
000821019 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6215$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x0
000821019 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000821019 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x2
000821019 9141_ $$y2016
000821019 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000821019 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000821019 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMACROMOLECULES : 2015
000821019 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMACROMOLECULES : 2015
000821019 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000821019 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000821019 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000821019 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000821019 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000821019 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000821019 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000821019 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000821019 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000821019 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000821019 920__ $$lyes
000821019 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000821019 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1
000821019 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x2
000821019 980__ $$ajournal
000821019 980__ $$aVDB
000821019 980__ $$aUNRESTRICTED
000821019 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000821019 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000821019 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000821019 9801_ $$aFullTexts
000821019 981__ $$aI:(DE-Juel1)JCNS-2-20110106