001     821057
005     20210129224736.0
024 7 _ |a 10.1021/acschemneuro.6b00047
|2 doi
024 7 _ |a WOS:000381717300009
|2 WOS
024 7 _ |a altmetric:8467763
|2 altmetric
024 7 _ |a pmid:27240424
|2 pmid
037 _ _ |a FZJ-2016-06301
082 _ _ |a 540
100 1 _ |a Ziehm, Tamar
|0 P:(DE-Juel1)162487
|b 0
|u fzj
245 _ _ |a Increase of Positive Net Charge and Conformational Rigidity Enhances the Efficacy of d -Enantiomeric Peptides Designed to Eliminate Cytotoxic Aβ Species
260 _ _ |a Washington, DC
|c 2016
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1479297656_29809
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Alzheimer’s disease (AD) is a neurodegenerative disorder and the most common type of dementia. Until now, there is no curative therapy available. Previously, we selected the amyloid-beta (Aβ) targeting peptide D3 consisting of 12 D-enantiomeric amino acid residues by mirror image phage display as a potential drug candidate for the treatment of AD. In the current approach, we investigated the optimization potential of the net charge was investigated and second, cyclization was introduced which is a well-known tool for the optimization of peptides for enhanced target affinity. Following this strategy, three D3 derivatives in addition to D3COOH were designed: C-terminally amidated linear D3 (D3CONH2), cyclic D3 (cD3), and cyclic D3 with an additional arginine residue (cD3r) to maintain the net charge of linear D3CONH2. These four compounds were compared to each other according to their binding affinities to Aβ(1−42), their efficacy to eliminate cytotoxic oligomers, and consequently their potency to neutralize Aβ(1−42) oligomer induced neurotoxicity. D3CONH2 and cD3r versions with equally increased net charge showed superior properties over D3COOH and cD3, respectively. The cyclic versions showed superior properties compared to their linear version with equal net charge, suggesting cD3r to be the most efficient compound among these four. Indeed, treatment of the transgenic AD mouse model Tg-SwDI with cD3r significantly enhanced spatial memory and cognition of these animals as revealed by water maze performance. Therefore, charge increase and cyclization imply suitable modification steps for an optimization approach of the Aβ targeting compound D3.
536 _ _ |a 553 - Physical Basis of Diseases (POF3-553)
|0 G:(DE-HGF)POF3-553
|c POF3-553
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Brener, Oleksandr
|0 P:(DE-HGF)0
|b 1
700 1 _ |a van Groen, Thomas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kadish, Inga
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Frenzel, Daniel
|0 P:(DE-Juel1)145441
|b 4
700 1 _ |a Tusche, Markus
|0 P:(DE-Juel1)131709
|b 5
|u fzj
700 1 _ |a Kutzsche, Janine
|0 P:(DE-Juel1)159137
|b 6
|u fzj
700 1 _ |a Reiß, Kerstin
|0 P:(DE-Juel1)161220
|b 7
700 1 _ |a Gremer, Lothar
|0 P:(DE-Juel1)145165
|b 8
|u fzj
700 1 _ |a Nagel-Steger, Luitgard
|0 P:(DE-Juel1)162443
|b 9
|u fzj
700 1 _ |a Willbold, Dieter
|0 P:(DE-Juel1)132029
|b 10
|e Corresponding author
|u fzj
773 _ _ |a 10.1021/acschemneuro.6b00047
|g Vol. 7, no. 8, p. 1088 - 1096
|0 PERI:(DE-600)2528493-9
|n 8
|p 1088 - 1096
|t ACS chemical neuroscience
|v 7
|y 2016
|x 1948-7193
856 4 _ |u https://juser.fz-juelich.de/record/821057/files/acschemneuro.6b00047.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/821057/files/acschemneuro.6b00047.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/821057/files/acschemneuro.6b00047.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/821057/files/acschemneuro.6b00047.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/821057/files/acschemneuro.6b00047.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/821057/files/acschemneuro.6b00047.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:821057
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)162487
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131709
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)159137
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)145165
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)162443
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)132029
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-553
|2 G:(DE-HGF)POF3-500
|v Physical Basis of Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS CHEM NEUROSCI : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21