000821080 001__ 821080
000821080 005__ 20240712112841.0
000821080 0247_ $$2doi$$a10.1371/journal.pone.0163704
000821080 0247_ $$2Handle$$a2128/12857
000821080 0247_ $$2WOS$$aWOS:000385504400009
000821080 0247_ $$2altmetric$$aaltmetric:13482105
000821080 0247_ $$2pmid$$apmid:27727294
000821080 037__ $$aFZJ-2016-06324
000821080 041__ $$aEnglish
000821080 082__ $$a500
000821080 1001_ $$0P:(DE-HGF)0$$aTaylor, Alexander J.$$b0
000821080 245__ $$aProbe-Specific Procedure to Estimate Sensitivity and Detection Limits for 19F Magnetic Resonance Imaging
000821080 260__ $$aLawrence, Kan.$$bPLoS$$c2016
000821080 3367_ $$2DRIVER$$aarticle
000821080 3367_ $$2DataCite$$aOutput Types/Journal article
000821080 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1479365257_19620
000821080 3367_ $$2BibTeX$$aARTICLE
000821080 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000821080 3367_ $$00$$2EndNote$$aJournal Article
000821080 520__ $$aDue to low fluorine background signal in vivo, 19F is a good marker to study the fate of exogenous molecules by magnetic resonance imaging (MRI) using equilibrium nuclear spin polarization schemes. Since 19F MRI applications require high sensitivity, it can be important to assess experimental feasibility during the design stage already by estimating the minimum detectable fluorine concentration. Here we propose a simple method for the calibration of MRI hardware, providing sensitivity estimates for a given scanner and coil configuration. An experimental “calibration factor” to account for variations in coil configuration and hardware set-up is specified. Once it has been determined in a calibration experiment, the sensitivity of an experiment or, alternatively, the minimum number of required spins or the minimum marker concentration can be estimated without the need for a pilot experiment. The definition of this calibration factor is derived based on standard equations for the sensitivity in magnetic resonance, yet the method is not restricted by the limited validity of these equations, since additional instrument-dependent factors are implicitly included during calibration. The method is demonstrated using MR spectroscopy and imaging experiments with different 19F samples, both paramagnetically and susceptibility broadened, to approximate a range of realistic environments.
000821080 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000821080 588__ $$aDataset connected to CrossRef
000821080 7001_ $$0P:(DE-Juel1)162401$$aGranwehr, Josef$$b1$$ufzj
000821080 7001_ $$0P:(DE-HGF)0$$aLesbats, Clémentine$$b2
000821080 7001_ $$0P:(DE-HGF)0$$aKrupa, James L.$$b3
000821080 7001_ $$0P:(DE-HGF)0$$aSix, Joseph S.$$b4
000821080 7001_ $$0P:(DE-HGF)0$$aPavlovskaya, Galina E.$$b5
000821080 7001_ $$0P:(DE-HGF)0$$aThomas, Neil R.$$b6
000821080 7001_ $$0P:(DE-HGF)0$$aAuer, Dorothee P.$$b7
000821080 7001_ $$0P:(DE-HGF)0$$aMeersmann, Thomas$$b8
000821080 7001_ $$0P:(DE-HGF)0$$aFaas, Henryk M.$$b9$$eCorresponding author
000821080 773__ $$0PERI:(DE-600)2267670-3$$a10.1371/journal.pone.0163704$$gVol. 11, no. 10, p. e0163704 -$$n10$$pe0163704 -$$tPLoS one$$v11$$x1932-6203$$y2016
000821080 8564_ $$uhttps://juser.fz-juelich.de/record/821080/files/journal.pone.0163704.pdf$$yOpenAccess
000821080 8564_ $$uhttps://juser.fz-juelich.de/record/821080/files/journal.pone.0163704.gif?subformat=icon$$xicon$$yOpenAccess
000821080 8564_ $$uhttps://juser.fz-juelich.de/record/821080/files/journal.pone.0163704.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000821080 8564_ $$uhttps://juser.fz-juelich.de/record/821080/files/journal.pone.0163704.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000821080 8564_ $$uhttps://juser.fz-juelich.de/record/821080/files/journal.pone.0163704.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000821080 8564_ $$uhttps://juser.fz-juelich.de/record/821080/files/journal.pone.0163704.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000821080 909CO $$ooai:juser.fz-juelich.de:821080$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000821080 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162401$$aForschungszentrum Jülich$$b1$$kFZJ
000821080 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000821080 9141_ $$y2016
000821080 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000821080 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000821080 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000821080 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000821080 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000821080 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS ONE : 2015
000821080 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000821080 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000821080 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000821080 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000821080 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000821080 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000821080 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000821080 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000821080 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000821080 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000821080 920__ $$lyes
000821080 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000821080 9801_ $$aFullTexts
000821080 980__ $$ajournal
000821080 980__ $$aVDB
000821080 980__ $$aUNRESTRICTED
000821080 980__ $$aI:(DE-Juel1)IEK-9-20110218
000821080 981__ $$aI:(DE-Juel1)IET-1-20110218