000821088 001__ 821088
000821088 005__ 20240712112841.0
000821088 0247_ $$2doi$$a10.1021/acs.jpcc.6b07594
000821088 0247_ $$2ISSN$$a1932-7447
000821088 0247_ $$2ISSN$$a1932-7455
000821088 0247_ $$2WOS$$aWOS:000386107600058
000821088 037__ $$aFZJ-2016-06332
000821088 082__ $$a540
000821088 1001_ $$0P:(DE-HGF)0$$aXie, Jie$$b0$$eCorresponding author
000821088 245__ $$aModeling 3D-Deposition of TiO$_{2}$ Using a Monte Carlo Chemical Kinetics Approach
000821088 260__ $$aWashington, DC$$bSoc.$$c2016
000821088 3367_ $$2DRIVER$$aarticle
000821088 3367_ $$2DataCite$$aOutput Types/Journal article
000821088 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1479364791_19616
000821088 3367_ $$2BibTeX$$aARTICLE
000821088 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000821088 3367_ $$00$$2EndNote$$aJournal Article
000821088 520__ $$a3D microbatteries are indispensable to cope with the increasing energy demand of autonomous smart devices. To synthesize 3D microbatteries, step-conformal deposition of thin films into 3D-substrates is vital, and low pressure chemical vapor deposition (LPCVD) is a technique that is capable of achieving this goal. In the present work, the 3D-deposition of TiO2 is investigated. It is shown that the growth of anatase TiO2 can be characterized by two rate-determining processes. In the diffusion-controlled temperature region, the TiO2 films deposited into 3D-substrates lack step-conformity. In contrast, in the kinetically controlled temperature region, uniform films were deposited inside these microstructures. To understand and improve the LPCVD deposition process, the experimental results were simulated using a Monte Carlo chemical kinetics (MCCK) model. Good agreement between the model and experiments was achieved in all cases. It was found that the deposition probability is low in the kinetically controlled deposition region, while this probability was found to be high in the diffusion-controlled region. It is also shown that the reflections of precursor molecules inside the trenches play an important role in achieving homogeneous 3D deposition. To show the strength of the MCCK model, the optimized deposition parameters are applied to predict the film thickness profiles in narrower microstructures.
000821088 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000821088 588__ $$aDataset connected to CrossRef
000821088 7001_ $$0P:(DE-HGF)0$$aDanilov, Dmitri L.$$b1
000821088 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b2$$ufzj
000821088 7001_ $$0P:(DE-Juel1)165918$$aNotten, Peter H. L.$$b3$$ufzj
000821088 773__ $$0PERI:(DE-600)2256522-X$$a10.1021/acs.jpcc.6b07594$$gVol. 120, no. 41, p. 23823 - 23835$$n41$$p23823 - 23835$$tThe @journal of physical chemistry <Washington, DC> / C$$v120$$x1932-7455$$y2016
000821088 8564_ $$uhttps://juser.fz-juelich.de/record/821088/files/acs.jpcc.6b07594.pdf$$yRestricted
000821088 8564_ $$uhttps://juser.fz-juelich.de/record/821088/files/acs.jpcc.6b07594.gif?subformat=icon$$xicon$$yRestricted
000821088 8564_ $$uhttps://juser.fz-juelich.de/record/821088/files/acs.jpcc.6b07594.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000821088 8564_ $$uhttps://juser.fz-juelich.de/record/821088/files/acs.jpcc.6b07594.jpg?subformat=icon-180$$xicon-180$$yRestricted
000821088 8564_ $$uhttps://juser.fz-juelich.de/record/821088/files/acs.jpcc.6b07594.jpg?subformat=icon-640$$xicon-640$$yRestricted
000821088 8564_ $$uhttps://juser.fz-juelich.de/record/821088/files/acs.jpcc.6b07594.pdf?subformat=pdfa$$xpdfa$$yRestricted
000821088 909CO $$ooai:juser.fz-juelich.de:821088$$pVDB
000821088 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b2$$kFZJ
000821088 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165918$$aForschungszentrum Jülich$$b3$$kFZJ
000821088 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000821088 9141_ $$y2016
000821088 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000821088 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM C : 2015
000821088 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000821088 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000821088 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000821088 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000821088 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000821088 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000821088 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000821088 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000821088 920__ $$lyes
000821088 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000821088 980__ $$ajournal
000821088 980__ $$aVDB
000821088 980__ $$aUNRESTRICTED
000821088 980__ $$aI:(DE-Juel1)IEK-9-20110218
000821088 981__ $$aI:(DE-Juel1)IET-1-20110218