001     821111
005     20210129224759.0
024 7 _ |a 10.1093/neuonc/now154
|2 doi
024 7 _ |a 1522-8517
|2 ISSN
024 7 _ |a 1523-5866
|2 ISSN
024 7 _ |a WOS:000386162800016
|2 WOS
024 7 _ |a altmetric:11629427
|2 altmetric
024 7 _ |a pmid:27591333
|2 pmid
037 _ _ |a FZJ-2016-06354
082 _ _ |a 610
100 1 _ |a Kebir, Sied
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Dynamic O-(2-[18F]fluoroethyl)-L-tyrosine PET imaging for the detection of checkpoint inhibitor-related pseudoprogression in melanoma brain metastases
260 _ _ |a Oxford
|c 2016
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1479386048_19624
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Identifying patients with pseudoprogression, which is characterized by an initial increase of contrast-enhancing lesions that resolve or at least stabilize spontaneously on follow-up imaging without any treatment change, is critical for avoiding premature termination of potentially effective treatment. With the advent and success of checkpoint inhibitors such as ipilimumab, nivolumab, or pembrolizumab in particular, detecting pseudoprogression in patients with malignant melanoma has become a major challenge in clinical practice given a frequency as high as 7%–10% of cases.1,2 Diagnosing progressive disease and excluding pseudoprogression in melanoma metastases using the immune-related Response Criteria (irRC)2 require the initial increase of at least 25% in lesions load to be confirmed by follow-up imaging at least 4 weeks later.2 However, particularly for brain metastases from malignant melanoma, follow-up imaging might not be feasible for patients with clinical deterioration at the time of initial increase of lesions load. These patients might not be able to wait 4 weeks for a follow-up investigation to decide on
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Rauschenbach, Laurèl
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Galldiks, Norbert
|0 P:(DE-Juel1)143792
|b 2
700 1 _ |a Schlaak, Max
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Hattingen, Elke
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Landsberg, Jennifer
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Bundschuh, Ralph A.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Langen, Karl-Josef
|0 P:(DE-Juel1)131777
|b 7
700 1 _ |a Scheffler, Björn
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Herrlinger, Ulrich
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Glas, Martin
|0 P:(DE-HGF)0
|b 10
|e Corresponding author
773 _ _ |a 10.1093/neuonc/now154
|g Vol. 18, no. 10, p. 1462 - 1464
|0 PERI:(DE-600)2094060-9
|n 10
|p 1462 - 1464
|t Neuro-Oncology
|v 18
|y 2016
|x 1523-5866
856 4 _ |u https://juser.fz-juelich.de/record/821111/files/Neuro%20Oncol-2016-Kebir-1462-4.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/821111/files/Neuro%20Oncol-2016-Kebir-1462-4.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/821111/files/Neuro%20Oncol-2016-Kebir-1462-4.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/821111/files/Neuro%20Oncol-2016-Kebir-1462-4.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/821111/files/Neuro%20Oncol-2016-Kebir-1462-4.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/821111/files/Neuro%20Oncol-2016-Kebir-1462-4.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:821111
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)143792
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131777
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEURO-ONCOLOGY : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEURO-ONCOLOGY : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 1
920 1 _ |0 I:(DE-82)080010_20140620
|k JARA-BRAIN
|l JARA-BRAIN
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-82)080010_20140620
981 _ _ |a I:(DE-Juel1)INM-4-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21