000821114 001__ 821114
000821114 005__ 20210129224801.0
000821114 0247_ $$2doi$$a10.1016/j.neuroimage.2016.08.033
000821114 0247_ $$2ISSN$$a1053-8119
000821114 0247_ $$2ISSN$$a1095-9572
000821114 0247_ $$2WOS$$aWOS:000390982800002
000821114 037__ $$aFZJ-2016-06357
000821114 082__ $$a610
000821114 1001_ $$0P:(DE-Juel1)131766$$aGrinberg, Farida$$b0$$eCorresponding author
000821114 245__ $$aDiffusion kurtosis metrics as biomarkers of microstructural development: A comparative study of a group of children and a group of adults
000821114 260__ $$aOrlando, Fla.$$bAcademic Press$$c2017
000821114 3367_ $$2DRIVER$$aarticle
000821114 3367_ $$2DataCite$$aOutput Types/Journal article
000821114 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1484137999_30602
000821114 3367_ $$2BibTeX$$aARTICLE
000821114 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000821114 3367_ $$00$$2EndNote$$aJournal Article
000821114 520__ $$aThe most common modality of diffusion MRI used in the ageing and development studies is diffusion tensor imaging (DTI) providing two key measures, fractional anisotropy and mean diffusivity. Here, we investigated diffusional changes occurring between childhood (average age 10.3 years) and mitddle adult age (average age 54.3 years) with the help of diffusion kurtosis imaging (DKI), a recent novel extension of DTI that provides additional metrics quantifying non-Gaussianity of water diffusion in brain tissue. We performed voxelwise statistical between-group comparison of diffusion tensor and kurtosis tensor metrics using two methods, namely, the tract-based spatial statistics (TBSS) and the atlas-based regional data analysis. For the latter, fractional anisotropy, mean diffusivity, mean diffusion kurtosis, and other scalar diffusion tensor and kurtosis tensor parameters were evaluated for white matter fibres provided by the Johns-Hopkins-University Atlas in the FSL toolkit (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases). Within the same age group, all evaluated parameters varied depending on the anatomical region. TBSS analysis showed that changes in kurtosis tensor parameters beyond adolescence are more widespread along the skeleton in comparison to the changes of the diffusion tensor metrics. The regional data analysis demonstrated considerably larger between-group changes of the diffusion kurtosis metrics than of diffusion tensor metrics in all investigated regions. The effect size of the parametric changes between childhood and middle adulthood was quantified using Cohen's d. We used Cohen's d related to mean diffusion kurtosis to examine heterogeneous maturation of various fibres. The largest changes of this parameter (interpreted as reflecting the lowest level of maturation by the age of children group) were observed in the association fibres, cingulum (gyrus) and cingulum (hippocampus) followed by superior longitudinal fasciculus and inferior longitudinal fasciculus. The smallest changes were observed in the commissural fibres, forceps major and forceps minor. In conclusion, our data suggest that DKI is sensitive to developmental changes in local microstructure and environment, and is particularly powerful to unravel developmental differences in major association fibres, such as the cingulum and superior longitudinal fasciculus.
000821114 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000821114 588__ $$aDataset connected to CrossRef
000821114 7001_ $$0P:(DE-HGF)0$$aMaximov, Ivan I.$$b1
000821114 7001_ $$0P:(DE-Juel1)138244$$aFarrher, Ezequiel$$b2
000821114 7001_ $$0P:(DE-Juel1)131781$$aNeuner, Irene$$b3
000821114 7001_ $$0P:(DE-HGF)0$$aAmort, Laura$$b4
000821114 7001_ $$0P:(DE-Juel1)140573$$aThönneßen, Heike$$b5
000821114 7001_ $$0P:(DE-Juel1)137076$$aOberwelland, Eileen$$b6
000821114 7001_ $$0P:(DE-HGF)0$$aKonrad, Kerstin$$b7
000821114 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b8
000821114 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2016.08.033$$gp. S1053811916304189$$nPart A$$p12-22$$tNeuroImage$$v144$$x1053-8119$$y2017
000821114 8564_ $$uhttps://juser.fz-juelich.de/record/821114/files/1-s2.0-S1053811916304189-main.pdf$$yRestricted
000821114 8564_ $$uhttps://juser.fz-juelich.de/record/821114/files/1-s2.0-S1053811916304189-main.gif?subformat=icon$$xicon$$yRestricted
000821114 8564_ $$uhttps://juser.fz-juelich.de/record/821114/files/1-s2.0-S1053811916304189-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000821114 8564_ $$uhttps://juser.fz-juelich.de/record/821114/files/1-s2.0-S1053811916304189-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000821114 8564_ $$uhttps://juser.fz-juelich.de/record/821114/files/1-s2.0-S1053811916304189-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000821114 8564_ $$uhttps://juser.fz-juelich.de/record/821114/files/1-s2.0-S1053811916304189-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000821114 909CO $$ooai:juser.fz-juelich.de:821114$$pVDB
000821114 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131766$$aForschungszentrum Jülich$$b0$$kFZJ
000821114 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138244$$aForschungszentrum Jülich$$b2$$kFZJ
000821114 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131781$$aForschungszentrum Jülich$$b3$$kFZJ
000821114 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)137076$$aForschungszentrum Jülich$$b6$$kFZJ
000821114 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a INM-3$$b7
000821114 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b7$$kFZJ
000821114 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b8$$kFZJ
000821114 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000821114 9141_ $$y2017
000821114 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000821114 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000821114 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000821114 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000821114 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE : 2015
000821114 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000821114 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000821114 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000821114 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000821114 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000821114 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000821114 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000821114 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000821114 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROIMAGE : 2015
000821114 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000821114 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
000821114 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x2
000821114 980__ $$ajournal
000821114 980__ $$aVDB
000821114 980__ $$aI:(DE-Juel1)INM-3-20090406
000821114 980__ $$aI:(DE-Juel1)INM-4-20090406
000821114 980__ $$aI:(DE-82)080010_20140620
000821114 980__ $$aUNRESTRICTED
000821114 981__ $$aI:(DE-Juel1)INM-4-20090406