001     821114
005     20210129224801.0
024 7 _ |a 10.1016/j.neuroimage.2016.08.033
|2 doi
024 7 _ |a 1053-8119
|2 ISSN
024 7 _ |a 1095-9572
|2 ISSN
024 7 _ |a WOS:000390982800002
|2 WOS
037 _ _ |a FZJ-2016-06357
082 _ _ |a 610
100 1 _ |a Grinberg, Farida
|0 P:(DE-Juel1)131766
|b 0
|e Corresponding author
245 _ _ |a Diffusion kurtosis metrics as biomarkers of microstructural development: A comparative study of a group of children and a group of adults
260 _ _ |a Orlando, Fla.
|c 2017
|b Academic Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1484137999_30602
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The most common modality of diffusion MRI used in the ageing and development studies is diffusion tensor imaging (DTI) providing two key measures, fractional anisotropy and mean diffusivity. Here, we investigated diffusional changes occurring between childhood (average age 10.3 years) and mitddle adult age (average age 54.3 years) with the help of diffusion kurtosis imaging (DKI), a recent novel extension of DTI that provides additional metrics quantifying non-Gaussianity of water diffusion in brain tissue. We performed voxelwise statistical between-group comparison of diffusion tensor and kurtosis tensor metrics using two methods, namely, the tract-based spatial statistics (TBSS) and the atlas-based regional data analysis. For the latter, fractional anisotropy, mean diffusivity, mean diffusion kurtosis, and other scalar diffusion tensor and kurtosis tensor parameters were evaluated for white matter fibres provided by the Johns-Hopkins-University Atlas in the FSL toolkit (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases). Within the same age group, all evaluated parameters varied depending on the anatomical region. TBSS analysis showed that changes in kurtosis tensor parameters beyond adolescence are more widespread along the skeleton in comparison to the changes of the diffusion tensor metrics. The regional data analysis demonstrated considerably larger between-group changes of the diffusion kurtosis metrics than of diffusion tensor metrics in all investigated regions. The effect size of the parametric changes between childhood and middle adulthood was quantified using Cohen's d. We used Cohen's d related to mean diffusion kurtosis to examine heterogeneous maturation of various fibres. The largest changes of this parameter (interpreted as reflecting the lowest level of maturation by the age of children group) were observed in the association fibres, cingulum (gyrus) and cingulum (hippocampus) followed by superior longitudinal fasciculus and inferior longitudinal fasciculus. The smallest changes were observed in the commissural fibres, forceps major and forceps minor. In conclusion, our data suggest that DKI is sensitive to developmental changes in local microstructure and environment, and is particularly powerful to unravel developmental differences in major association fibres, such as the cingulum and superior longitudinal fasciculus.
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Maximov, Ivan I.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Farrher, Ezequiel
|0 P:(DE-Juel1)138244
|b 2
700 1 _ |a Neuner, Irene
|0 P:(DE-Juel1)131781
|b 3
700 1 _ |a Amort, Laura
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Thönneßen, Heike
|0 P:(DE-Juel1)140573
|b 5
700 1 _ |a Oberwelland, Eileen
|0 P:(DE-Juel1)137076
|b 6
700 1 _ |a Konrad, Kerstin
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Shah, N. J.
|0 P:(DE-Juel1)131794
|b 8
773 _ _ |a 10.1016/j.neuroimage.2016.08.033
|g p. S1053811916304189
|0 PERI:(DE-600)1471418-8
|n Part A
|p 12-22
|t NeuroImage
|v 144
|y 2017
|x 1053-8119
856 4 _ |u https://juser.fz-juelich.de/record/821114/files/1-s2.0-S1053811916304189-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/821114/files/1-s2.0-S1053811916304189-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/821114/files/1-s2.0-S1053811916304189-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/821114/files/1-s2.0-S1053811916304189-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/821114/files/1-s2.0-S1053811916304189-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/821114/files/1-s2.0-S1053811916304189-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:821114
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)131766
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)138244
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131781
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)137076
910 1 _ |a INM-3
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131794
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROIMAGE : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROIMAGE : 2015
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 1
920 1 _ |0 I:(DE-82)080010_20140620
|k JARA-BRAIN
|l JARA-BRAIN
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-82)080010_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)INM-4-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21