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We present a coarse-grained particle-based simulation technique for modeling flow of complex soft

matter fluids such as polymer solutions in the presence of solid interfaces. In our coarse-grained

description of the system, we track the motion of polymer molecules using their centers-of-mass

as our coarse-grain co-ordinates and also keep track of another set of variables that describe the

background flow field. The coarse-grain motion is thus influenced not only by the interactions based

on appropriate potentials used to model the particular polymer system of interest and the random

kicks associated with thermal fluctuations, but also by the motion of the background fluid. In order to

couple the motion of the coarse-grain co-ordinates with the background fluid motion, we use a Galilean

invariant, first order Brownian dynamics algorithm developed by Padding and Briels [J. Chem. Phys.

141, 244108 (2014)], which on the one hand draws inspiration from smoothed particle hydrodynamics

in a way that the motion of the background fluid is efficiently calculated based on a discretization

of the Navier-Stokes equation at the positions of the coarse-grain coordinates where it is actually

needed, but also differs from it because of the inclusion of thermal fluctuations by having momentum-

conserving pairwise stochastic updates. In this paper, we make a few modifications to this algorithm

and introduce a new parameter, viz., a friction coefficient associated with the background fluid, and

analyze the relationship of the model parameters with the dynamic properties of the system. We also

test this algorithm for flow in the presence of solid interfaces to show that appropriate boundary

conditions can be imposed at solid-fluid interfaces by using artificial particles embedded in the solid

walls which offer friction to the real fluid particles in the vicinity of the wall. We have tested our

method using a model system of a star polymer solution at the overlap concentration. Published by

AIP Publishing. [http://dx.doi.org/10.1063/1.4967422]

I. INTRODUCTION

The flow of complex soft matter involving mesoscopic

particles can be described, in principle, by simultaneously

solving the coupled deterministic equations of motion of all

the atoms present in the system.1,2 However, when dealing

with processes occurring in soft matter systems over substan-

tially longer length and time scales, typically several orders of

magnitude higher than those occurring at the atomic level,

this becomes computationally very expensive, rendering it

practically impossible to solve the problem in this manner in

a reasonable time-frame even with the state-of-the-art com-

puters available today. Therefore, a computationally efficient

solution is to simplify the description by lumping groups of

atoms into coarse-grain sites which then interact with each

other through effective interactions, thereby integrating out

several internal degrees of freedom and making the prob-

lem tractable.3,4 Although it might seem too simplistic, it is

interesting to notice that several phenomena in complex soft

a)Authors to whom correspondence should be addressed. Electronic
addresses: v.r.ahuja@utwente.nl and w.j.briels@utwente.nl

matter systems such as polymer melts, polymer solutions, and

worm-like-micellar solutions have actually been studied by

restricting the focus just to the motion of the centers-of-mass

of the mesoscopic particles therein.5–10 It is needless to say

that one has to be conscious of the fact that when modeling

a system with coarse-grain simulations using the positions of

the centers-of-mass, several internal degrees of freedom have

been eliminated, which need to be accounted for. For instance,

the same set of positions of these centers-of-mass could have

a different time evolution because of a different configuration

of the eliminated degrees of freedom. Hence, the coarse-grain

system can no longer be treated as deterministic. This can

be achieved by updating the positions of the centers-of-mass

of the mesoscopic particles through a stochastic differential

equation such as Langevin or Brownian dynamics.

At the outset, we would like to clarify what we refer to

as Langevin and Brownian dynamics throughout this paper.

According to the terminology that we have employed, the

motion of a mesoscopic particle moving through a station-

ary background according to Langevin dynamics is given by a

second-order stochastic differential equation where the total

force acting on the mesoscopic particle is given by a sum

0021-9606/2016/145(19)/194903/12/$30.00 145, 194903-1 Published by AIP Publishing.
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of three forces, viz., a driving force due to the interaction

with other mesoscopic particles or an external force field,

a frictional force proportional to the velocity of the particle

but acting against it, and a random force, whose properties

are calculated based on the fluctuation dissipation theorem,

thereby serving as a thermostat. Dissipative Particle Dynamics

(DPD),11–13 for instance, uses a framework based on Langevin

dynamics. However, for highly overdamped soft matter sys-

tems, where friction coefficients are large, the time scale over

which the velocities get thermalized is much shorter than the

time scale over which the positions of the particles change

to any significant extent. In such cases, one can average over

the velocities and use instead a first order stochastic differen-

tial equation to update the position of the particles, henceforth

referred to as Brownian dynamics.14,15 Several phenomena in

soft matter systems, ranging from viscoelasticity in polymer

solutions, shear thinning behavior, alignment of colloids in

viscoelastic fluids, dynamics of proteins, etc., have been stud-

ied using a framework based on Brownian dynamics or its

variations.8–10,16–20

In order to study flow behavior of soft matter systems,

the standard Brownian dynamics equations must be modified

by the addition of a term that accounts for the velocity of the

background material so that the friction is applied to the motion

of the particles relative to the background velocity field. It is

straightforward to do this if the background flow field is known

a priori. However, for flows of soft matter systems through

complex geometries involving solid interfaces, the flow field

can be very complex and is not known a priori. The velocity of

the background material at the position of the particle may be

computed by averaging the drift velocity of the other particles

in the vicinity of the particle itself. This has been done previ-

ously for the special case of shear flow of soft matter systems,

where the velocity of the background material was calculated

by spatio-temporally averaging the velocity of the particles in

flow-oriented layers to study shear banding.21–25

A more general momentum-conserving algorithm for

modeling self-developing flows of complex fluids in any flow

situation has been developed recently.26 Using this algorithm,

friction is applied to the relative motion of the coarse-grained

particles with respect to the background fluid. A separate set of

variables is used for describing the background fluid velocities,

which are updated based on a discretization of the Navier-

Stokes equation at the positions of the coarse-grain coordi-

nates, in a way similar to Smoothed Particle Hydrodynamics

(SPH).27–31 This obviates the need to calculate the entire back-

ground flow field and instead calculates the flow field only

at the positions of the coarse-grain coordinates, where it is

actually needed. The background velocity at the position of

a coarse-grained particle is also influenced by the forces act-

ing on the coarse-grained particle due to its interaction with

other coarse-grained particles in its vicinity. These forces are

immediately transmitted to the background flow field using

a friction coefficient associated with the background fluid,

which is an additional parameter we have introduced in the

algorithm; however, the background material retains memory

of this force, which gradually fades away with a characteristic

time constant. The characteristic time constant and the friction

coefficients are input parameters for our simulations which

can, in principle, be calculated from the physical properties of

the system measured experimentally or obtained from inde-

pendent simulations. The friction coefficient associated with

the coarse-grain motion may be calculated from the diffusion

coefficient of the particles in the system. In this paper, how-

ever, since the focus is model development, we have not used

real values obtained from experimental data of physical prop-

erties but rather non-dimensionalized our results with respect

to a basis set.

Since the motion of the coarse-grain particles influences

the background flow field by transmitting the inter-particle

force to it and the background flow field in turn influences

the frictional force offered to the coarse-grain particles, this

is a two-way coupling algorithm. In other words, the infor-

mation about the background flow field is obtained effectively

by spatio-temporally averaging the velocities in the vicinity of

the coarse-grain coordinates, which is then used to calculate

the friction for these coarse-grained particles relative to this

background flow field. Furthermore, the background velocity

is updated in a manner that conserves momentum pairwise. In

this paper we analyze this model, furthering the understanding

of the relationship of the model parameters with the dynamic

properties of the system such as the mean squared displace-

ment (MSD) and the shear relaxation modulus. We discuss

additional insights that we have developed, particularly related

to the friction coefficient associated with the background fluid.

We have also derived an approximate expression for the mean

squared displacement of the coarse-grained particles for a

simple case of non-interacting particles.

Although initially developed independently by Padding

and Briels,26 the momentum conserving algorithm bears sim-

ilarity to an existing modeling technique called Smoothed

Dissipative Particle Dynamics (SDPD),32 which also incorpo-

rates thermal fluctuations in the standard SPH approach. SDPD

has been shown to obey proper scaling with varying resolution

for Brownian motion of a colloidal particle as well as a polymer

molecule in suspension.33 The method has recently been used

to simulate polymeric liquids,34,35 where polymer molecules

are represented as linear chains of beads connected to each

other with springs in the presence of other fluid elements. The

main difference between their approach and ours is that we dis-

cretize the Navier-Stokes equation for computing the velocity

of the background fluid on the same nodes which also represent

the centers-of-mass of the coarse-grained polymer molecules,

thereby making our approach computationally more efficient.

It is also worth mentioning that several improvements that have

been suggested to SDPD, like incorporating angular momen-

tum conservation,36,37 can also be easily incorporated in our

technique if it is employed for applications where this might

be important.38

The discussion so far has been restricted to bulk flow,

i.e., flow in the absence of interfaces or in other words, flow

occurring in the bulk far away from any interfaces. If the algo-

rithm is to be applied to study the flow of soft matter systems

through confined spaces involving solid interfaces, then it is

also necessary to impose appropriate boundary conditions at

the solid-fluid interfaces, which is an important objective of

the work that we present here. There is significant ongoing

work in this direction. Several techniques for implementing
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boundary conditions for coarse-grain techniques such as

smoothed particle hydrodynamics and dissipative particle

dynamics have been developed.39–42 We have used the tech-

nique of incorporating randomly placed “artificial particles”

in the wall and implementing boundary conditions used by

Morris et al.39 for modeling low Reynolds number incom-

pressible flows using smoothed particle hydrodynamics. The

choice of the term “artificial particles” here is simply motivated

by the fact that these particles do not obey any real dynamics.

Rather, the sole function of these artificial particles is to offer

friction to the real fluid particles in the vicinity of the wall by

acting like “frozen particles.” However the position of these

artificial particles is not fixed in the wall. In order that the real

particles feel a uniform wall, i.e., to ensure that the random

positions of these artificial particles in the wall do not bias the

flow field in any way, the position of these artificial particles is

constantly randomized within the wall. This obviates the need

to use a high density of these particles in order to maintain

the uniformity of the wall. Thus, we present a technique for

modeling flow of complex soft matter fluids using a Galilean

invariant algorithm in the presence of solid interfaces.

II. MODEL DEVELOPMENT

A. Update of positions

The equation of motion for the mesoscopic particle i in a

moving background using Brownian dynamics is given by

dRi(t) = vi(t)dt +
Fi(t)

ξi
dt + kBT

∂

∂Ri

(

1

ξi

)

dt + dWR
i (t), (1)

where we must clarify that the first term on the right hand

side of the above equation, i.e., vi(t), is not the velocity of

the mesoscopic particle i itself; rather it is the velocity of the

background material at the position of the mesoscopic particle,

relative to which the particle experiences friction. The second

term on the right hand side denotes the contribution from the

overall force Fi experienced by the particle i including the

external force field as well as the interaction with other meso-

scopic particles. It must be noted that the friction coefficient ξi
has been assumed to be a constant in this paper for the sake of

simplicity, thereby obviating the need to account for its posi-

tional variation shown in the third term on the right hand side.

The fourth term on the right hand side, i.e., dWR
i (t) is a random

displacement typical of Brownian dynamics simulations. The

properties of the random fluctuations in the position updates

are calculated based on the fluctuation dissipation theorem and

are thus defined as follows:

〈dWR
i dWR

j 〉 =
2kBT

ξi
δijdtI. (2)

B. Update of velocities

If the background flow field is known a priori, then it

can be plugged into Eq. (1) and the problem can be solved

quite easily. However, the flow field for soft matter fluids

flowing through complex geometries is typically quite com-

plex and is not known a priori. To calculate the background

flow field based on the motion of the coarse grain coordinates,

we use the momentum conserving Galilean invariant two-way

coupling scheme proposed by Padding and Briels26 with our

own modifications. This algorithm couples the motion of the

coarse-grain coordinates and the background flow field with

each other. In this section, we briefly describe this algorithm

and its development. The scheme for updating velocities in

this algorithm is not based on a microscopic description but

rather a phenomenological description. Consider the Navier-

Stokes equation for the velocity field v(r) of a Newtonian

liquid having kinematic viscosity ν,

Dv

Dt
(r) = ν∇2v(r) + g(r), (3)

where D/Dt is the material derivative and g(r) is the accelera-

tion due to body forces. Now, instead of solving the above

equation on an Eulerian grid, inspired by Smoothed Parti-

cle Hydrodynamics (SPH),27–31 we calculate the velocity of

the background material only at the positions of the particles,

which is where it is actually needed as can be seen from Eq. (1).

Thus, we have

Dv

Dt
(Ri) =

dvi

dt
. (4)

The acceleration due to body forces for the background fluid

is due to the force Fi acting on the coarse-grained particles,

which is immediately transmitted to the background fluid using

an effective mass mi as follows:

g(Ri) =
Fi

mi

. (5)

For calculating the Laplacian of the velocity field, i.e., ∇2v(r),

a finite-difference like form has been employed, which is

a symmetrized version of the form originally proposed by

Brookshaw.43 Thus, we have

ν∇2v(Ri) = ν

N
∑

j=1

mj

(

1

ρi

+

1

ρj

)

(

vi − vj

) 1

Rij

dw

dr
(Rij), (6)

where Rij is the distance between particles i and j, the function

w(r) is a normalized dimensionless weight function defined

later, and ρi is the effective mass density for the background

fluid in the vicinity of particle i defined as follows:

ρi =

∑N
j=1

mjw(Rij)

1 + w(0)/ρ#
, (7)

where the sum in the numerator includes the self term j = i. We

must point out that we have changed the definition of ρi from

the original definition proposed in the algorithm by Padding

and Briels26 in order to ensure proper normalization44 so that

for a homogeneous solution, we have ρ = mρ#, where ρ# is

the number density of the particles.

Putting together Equations (3)–(6) and including a ran-

dom term as per the fluctuation dissipation theorem, we arrive

at the following equation that we have used in our simulations

for the update of the velocities:

dvi(t) =
Fi(t)

mi

dt +

N
∑

j=1

fij

τ
(vj(t) − vi(t))dt +

N
∑

j=1

dWv
ij, (8)

where f ij, which is shorthand for f (Rij), is a normalized dimen-

sionless weight function and τ is a characteristic time constant
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associated with the background fluid, both of which will be

defined later, such that their ratio is given by

fij

τ
= −ν mj

(

1

ρi

+

1

ρj

)

1

Rij

dw

dr
(Rij) (r ≤ Rc). (9)

The last term on the right hand side of Eq. (8) is a random

contribution to the velocity update, defined pairwise in an anti-

symmetric manner such that midWv
ij
= −mjdWv

ji
so that the

velocity updates are momentum conserving. The properties of

these velocity fluctuations dWv
ij

have been calculated in a way

that the probability distribution of the coarse-grain coordinates

and velocities at a steady state matches with the expected equi-

librium distribution. For a detailed derivation starting with the

Chapman-Kolmogorov equations leading to a Fokker-Planck

equation for the evolution of the probability distribution, we

refer to the appendix of the paper by Padding and Briels.26

Accordingly, we have

〈

dWv
ijdWv

ij

〉

=

2kBT

mi

fij

τ
dtI, (10)

〈

dWv
ik

dWv
jl

〉

= 0 (ik , jl ∧ ik , lj), (11)
〈

dWR
i dWv

jk

〉

= 0. (12)

If we multiply Eq. (8) throughout by the effective mass

mi, we obtain

midvi(t) = Fi(t)dt +

N
∑

j=1

fij
mi

τ
(vj(t) − vi(t))dt + mi

N
∑

j=1

dWv
ij.

(13)

Owing to the resemblance of the above rearranged equation

with the Langevin equation, we naturally define the fric-

tion coefficient associated with the background fluid in an

analogous manner as follows:

ξ ′i =
mi

τ
. (14)

It must be noted that in our simulations, all the particles have

an identical mass and hence the friction coefficient ξ ′
i

has been

assumed to be a constant in this paper. However, contrary to

the paper by Padding and Briels,26 we do not set ξ ′ identi-

cally equal to ξ. Rather, in this paper, we have investigated

the effect of this friction coefficient ξ ′ on the dynamics of

the system, which is actually very significant. The numerical

value for ξ ′ can be indirectly calculated based on the value

of the mass, which can be calculated as the ratio of the mass

density of the system to the number density of the particles

and the value of the characteristic time constant, which can

be calculated based on the kinematic viscosity of the system,

as will be clear later. In this paper, however, since our focus

is model development, we have not used real values obtained

from experimental data but rather non-dimensionalized our

results with respect to a basis set, which will be defined

later.

C. Interaction with solid walls

For studying confined flows, i.e., flows in the presence of

solid interfaces, it is important to take into account the inter-

action of the fluid with the solid walls establishing appropriate

boundary conditions. We have tested our model for apply-

ing the no-slip boundary conditions with a test case where

we have a star polymer solution flowing between two infinite,

parallel solid walls. Our model for the solid-fluid interactions

consists of incorporating “artificial” particles in the wall and

implementing Morris boundary conditions,39 which provide

the necessary friction to the real particles in order to obtain

no-slip boundary conditions at the solid-fluid interface. The

Morris boundary conditions involve assigning an artificial

velocity to these artificial particles for every pairwise inter-

action with a real particle, such that the interpolated velocity

at the solid interface is zero. This is achieved by setting the

artificial velocity of an artificial particle B at a perpendicular

distance dB from the solid interface for its interaction with a

real particle A at a perpendicular distance dA from the solid

interface as follows:

vB = −(dB/dA)vA. (15)

It must be emphasized that this is an artificial velocity and

this velocity is not used to evolve the position of the artificial

particle. Rather, it is used for calculating the difference in the

velocity of the particles needed for the velocity update of the

real particle, as follows:

vA − vB = βvA, (16)

where the value of β is restricted with an upper bound for prac-

tical considerations for the eventuality that the particle A may

approach very close to the solid-fluid boundary, as follows:

β = min

(

βmax, 1 +
dB

dA

)

, (17)

where βmax is chosen to be 1.5 in our simulations as suggested

by Morris et al.39 Furthermore, the velocity fluctuation term for

the interaction between real and artificial particles is also aug-

mented with a factor of
√
β, which prevents cooling of the fluid

near the wall. The positions of the artificial particles within the

wall are selected randomly at every time step in order to main-

tain the uniformity of the wall. This has proven to be very

effective, thus obviating the need for using a higher density

of these artificial particles inside the wall which would have

been computationally more intensive. So in our simulations,

we have chosen the density of artificial particles embedded

in the wall to be the same as the density of the real particles.

Besides, we also use a repulsive potential which keeps the real

particles from penetrating into the wall, which is the region

in which the artificial particles are distributed. For the repul-

sive potential, we have chosen a Gaussian function with two

parameters as follows:

φrep(ri) = a exp
(

−b r2
i

)

, (18)

where ri is the perpendicular distance of particle i from a plane

situated within the wall at a distance of 1.2σ from the interface,

a is a parameter chosen to be 300 kBT , and b is a parameter

chosen to be 2σ−2. These parameters have been selected such

that the real particles do not penetrate the 1.5σ thick wall

embedded with artificial particles on the top and bottom of the

channel of width 10σ in which the real particles are present.
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III. TEST SYSTEM AND PARAMETERS

A. Test system

We have tested our model with a star polymer solution

at the overlap concentration. The behavior of star polymers

can vary ranging from ultrasoft to nearly hard colloid like

behavior as their interpenetrability depends on their function-

ality, which is defined as the number of linear chains (arms)

bound to the central core of the star polymer. Owing to their

wide-ranging interactions, they can be used to study a range of

colloidal properties for different interactions.45 At an interme-

diate functionality, due to the radial variation of the monomer

concentration,46 each star polymer can be treated as a soft

repulsive sphere with a small central core and a corona of

grafted chains around it. We use a potential V ss for the inter-

action between the particles in our simulation, which has been

used for modeling star polymers in the past and has also been

verified by scattering experiments.7 It is defined as follows:

Vss(r)

kBT
=

5

18
f 3/2

− ln

(

r

σ

)

+

1

1 +
√

f /2

 for r ≤ σ

(19)

=

5

18
f 3/2 1

1 +
√

f /2

σ

r
exp

−
√

f

2σ
(r − σ)


for σ < r ≤ rc, (20)

where f is the functionality, r is the distance between the par-

ticles, σ is the effective corona diameter, and rc is the cut-off

radius at which the potential is truncated, which is chosen such

that the forces are negligible beyond this distance.

B. Definitions of weight functions
and the characteristic time constant

We have chosen a normalized weight function w(r) from

the SPH literature that smoothly decays to zero as r approaches

the cut-off radius Rc, given as follows:

w(r) =
21

2πR3
c

(

1 −
r

Rc

)4 (

4
r

Rc

+ 1

)

(r ≤ Rc). (21)

Thus, in accordance with Eqs. (9) and (21), we define the nor-

malized weight function f ij and the characteristic time constant

τ as follows:

fij = −
R2

c

28
mj

(

1

ρi

+

1

ρj

)

1

Rij

dw

dr
(Rij) (r ≤ Rc), (22)

τ =
R2

c

28ν
, (23)

where the coefficient R2
c/28 appears due to normalization of

f ij. Simplifying further, we obtain the following expression for

f ij:

fij =
15

2πR3
c

mj

(

1

ρi

+

1

ρj

) (

1 −
Rij

Rc

)3

(r ≤ Rc). (24)

C. Parameter values

We have expressed all the variables in terms of a basis set

consisting of the following three quantities: (1) thermal energy

kBT, (2) diffusion coefficient Do, and (3) effective corona diam-

eter σ. The friction coefficient ξ is assumed to be constant for

the sake of simplicity and is given by ξ = kBT/D0. Further-

more, we have also assumed a uniform mass which implies a

uniform ξ ′ for all the particles in any given simulation. How-

ever we have performed simulations with different values of ξ ′

by systematically varying the ratio ξ ′/ξ ranging from 1 to 100.

We have used a time step dt = 10−4σ2/D0 for all our simu-

lations. We have performed several simulations with different

values of τ ranging form 1.0× 10−3σ2/D0 to 1.0× 101σ2/D0

ensuring that we always maintain τ > 10 dt for stability of

the algorithm. In our simulations, we have worked with star

polymers having a functionality f = 128. For operating at the

overlap concentration (c = c∗), the number density of the star

polymers has been fixed to 0.24 σ−3.47 For the confined flow

simulations, the density of artificial particles inside the wall is

the same as the density of the real particles. So in a cubical sim-

ulation box having a side of 13 σ, we have 524 particles. We

have used an effective cut-off radius rc = 2.5σ for the potential

beyond which the forces are weak enough to be ignored. We

have chosen the same cut-off distance Rc for our weight func-

tion w(r) as well, which leads to approximately 15 particles

within a sphere of radius Rc, ensuring that we have an accurate

enough estimate of the Laplacian of the velocity field.

IV. RESULTS AND DISCUSSION

A. Bulk flow simulations in a quiescent state

In this section, we present the results for simulations of

our test system, i.e., a star polymer solution at overlap con-

centration performed in the absence of any solid interfaces to

simulate flows far away from any walls, i.e., in the bulk, in a

quiescent state. We have studied the effect of our model param-

eters on some static and dynamic properties of the system and

compared the results with standard Brownian dynamics simu-

lations in the absence of a background flow field (referred to as

“standard BD” in the graphs). All the static properties remain

unaffected by the Galilean invariant algorithm.26 As can be

seen from Fig. 1, we have verified that the radial distribution

function g(r) of the particles for several different values of the

parameters of the algorithm is identical to the radial distribu-

tion function of the particles in the absence of a background

flow field.

FIG. 1. Radial distribution function of the particles obtained from the stan-

dard Brownian dynamics simulation shown with black solid line vs. Brownian

dynamics with the Galilean invariant algorithm for various values of the

parameter τ (for any given value of ξ′/ξ) shown with colored dotted lines.
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It is interesting to note however that even though the static

properties are unaffected by the Galilean invariant algorithm,

we have found that the dynamic properties are affected by it.

We have studied the effect on two dynamic properties, viz.,

the shear relaxation modulus G(t) and the mean squared dis-

placement (MSD) of the particles by a systematic variation of

the system parameters τ and ξ ′. We have found that the effect

on the dynamic properties due to variation of τ is significant

and directly depends on the value of ξ ′ or vice versa. Since we

have implicitly chosen ξ as a basic unit as it is directly linked

to D0, we will discuss this effect in terms of the ratio ξ ′/ξ.
The shear relaxation modulus G(t) has been computed as an

autocorrelation of spontaneous shear stress fluctuations in an

equilibrium simulation, as shown in the following equations:

G(t) =
V

kBT

〈

S
pp
xy (t)S

pp
xy (0)

〉

, (25)

S
pp
xy (t) = −

1

V

∑

i<j

(

xi − xj

)

Fy,ij, (26)

where V denotes the volume of the box and S
pp
xy is the

xy-component of the microscopic particle stress tensor which

is calculated from Fy ,ij, the y-component of the force on par-

ticle i due to its interaction with particle j. The effect of the

model parameters on the shear relaxation modulus G(t) of the

particles is shown in Fig. 2.

The mean squared displacement has been calculated as

follows:

MSD(t) =
〈

(r(t) − r(0))2
〉

. (27)

The effect of the model parameters on the mean squared

displacement (MSD) of the particles is shown in Fig. 3.

It can be observed from the graphs of the shear relaxation

modulus G(t) as shown in Fig. 2 that the higher the value of τ,

the slower the stresses relax until eventually approaching the

standard Brownian dynamics limit at very high values of τ.

Furthermore, the effect of variation of τ is more pronounced

for smaller values of the ratio ξ ′/ξ and it becomes almost

insignificant at high values of the ratio ξ ′/ξ. A similar effect

can be seen for the mean squared displacement of the particles.

As can be seen from Fig. 3, the long term diffusion coefficient

decreases with increasing value of τ until finally approaching

the standard Brownian dynamics limit at very high values of

τ. Again, as in the case of the shear relaxation modulus, the

effect is more pronounced at smaller values of the ratio ξ ′/ξ
and becomes almost insignificant at higher values of the ratio

ξ ′/ξ.
The effect of τ on the dynamic properties can be readily

understood if we interpret τ as being indicative of the time over

which the background velocity is averaged or in other words,

the memory of the system. If we rewrite Eq. (8) using Eq. (14)

and assume a homogeneous distribution of particles, we get

vi(t + dt) =

(

1 − dt

τ

)

vi(t) +
dt

τ


Fi(t)

ξ

(

ξ ′

ξ

)−1

+

N
∑

j=1

fijvj(t)


+

N
∑

j=1

dWv
ij. (28)

From this perspective, the background velocity in the vicinity

of particle i can be interpreted as being calculated based on

spatio-temporal averaging.26 Clearly, the characteristic time

constant τ dictates over how many time steps the system will

average the background velocity or in other words what is the

memory of the system. So if τ is very large, the background

velocity gets averaged over such a long time that it becomes

effectively negligible since we are dealing with the bulk in a

quiescent state (i.e., the velocities fluctuate about a long term

average value of zero). The position updates then reduce to

standard Brownian dynamics.

Another interesting point here is that this effect of τ on

the dynamic properties systematically diminishes as the value

FIG. 2. Shear relaxation modulus of the particles using the standard Brow-

nian dynamics simulation shown with black solid line vs. using the Galilean

invariant algorithm for various parameter values shown with colored dotted

lines. (a) ξ′/ξ = 1, (b) ξ′/ξ = 10, (c) ξ′/ξ = 100.
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FIG. 3. Mean squared displacement of the particles using standard Brown-

ian dynamics simulation shown with black solid line vs. using the Galilean

invariant algorithm for various parameter values shown with colored dotted

lines. (a) ξ′/ξ = 1, (b) ξ′/ξ = 10, (c) ξ′/ξ = 100.

of the ratio ξ ′/ξ is increased, until finally becoming almost

insignificant at very large values of the ratio ξ ′/ξ. This is

due to the fact that when ξ ′ ≫ ξ, the coupling between the

coarse grain motion and the background flow field becomes

insignificant which can be seen from Eq. (28) as the dimin-

ishing effect of the force transmitted to the background flow

field when ξ ′/ξ is very large. In other words, when the ratio

ξ ′/ξ is very large, the background flow field does not feel

the interactions between the coarse-grain particles and vice

versa, leading to the shear relaxation modulus and the mean

squared displacement of the particles approaching the standard

Brownian dynamics limit.

The model is thus very general and can be used for a

diverse range of behaviors ranging from particles that are

strongly affected by the fluctuations of the background to

particles that are so weakly affected by the fluctuations of

the background that they are almost oblivious of its exis-

tence. Since the diffusion coefficient is something that can

be measured for a system experimentally, it could be used

to calculate the parameters of the model. Therefore, we next

derive an approximate expression for the mean squared dis-

placement. It must be pointed out however that this derivation

is approximate in the sense that it does not fully capture the

effects due to all the model parameters, as it makes several

assumptions.

Consider a simple case of non-interacting particles in

the bulk in a quiescent state, i.e., a case where there are

no forces on the particles except for the random kicks and

velocity fluctuations. For a homogeneous solution where

the friction coefficients of all particles are identical, the

model dictates the following position and velocity updates,

respectively:

dRi(t) = vi(t)dt + dWR
i (t), (29)

dvi(t) =
1

τ

N
∑

j=1,j,i

fijvj(t)dt −
vi(t)dt

τ

N
∑

j=1,j,i

fij +

N
∑

j=1,j,i

dWv
ij(t).

(30)

For a homogeneous solution,
∑N

j=1,j,i
fij averaged over a long

time would be equal to unity for all particles. So as a sim-

plifying assumption, we assume a constant average value of
∑N

j=1,j,i
fij = 1, thereby also neglecting any correlations that it

may have with the velocities. The above equation then can be

alternatively written as an integral equation as follows:

vi(t) = vi(0)e−t/τ
+

∫ t

0

dt ′e−(t−t′)/τ

× *.,
N

∑

j=1,j,i

dWv
ij
(t ′)

dt
+

1

τ

N
∑

j=1,j,i

fijvj(t
′)
+/
- . (31)

This equation may be solved in the usual way by iteration.

Actually, since the second term in the integrand will be small,

we expect that the zeroth order calculation by neglecting this

term will give a good result. For a detailed derivation, the reader

may refer to the Appendix. For the zeroth order calculation,

we arrive at the following result:

〈∆Ri(t)
2〉 =

6kBT

ξ ′i

[
t − τ

(

1 − e−t/τ
)]
+

6kBT

ξi
t. (32)

After a sufficiently long time, i.e., t ≫ τ, we get

〈∆Ri(t)
2〉 =

6kBT

ξ ′i
t +

6kBT

ξi
t. (33)

Thus, we can see from the above equation that the effect

of the friction coefficient associated with the background on

the dynamic properties of the system such as the mean squared

displacement of the particles is significant and is in line with

what we observed from the simulation results shown earlier.

We can use Eq. (33) to set the value of the friction coefficient ξ

so as to obtain the correct diffusion coefficient of the particles

in the system.
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In order to compare our derivation results, we have per-

formed simulations of particles with the potential V ss turned

off so as to be as close to the assumptions made in the derivation

as possible and the results are shown in Fig. 4.

As we can see from Fig. 4, the expression derived from

theory satisfactorily predicts the mean squared displacement

of the particles, particularly for large values of τ.

B. Flow simulations with solid interfaces

To test the model for flow in the presence of solid inter-

faces, we have performed simulations of the test system, i.e.,

a star polymer solution flowing through a rectangular channel.

The cubical simulation box with each side measuring 13 σ

consists of a rectangular channel of width 10 σ that has been

simulated by having two walls filled with artificial particles,

each of thickness 1.5 σ, placed within the box—one at the

top and the other at the bottom. Periodic boundary conditions

have been applied in all the directions including the vertical

direction so that any particle approaching a wall effectively

encounters a wall of 3 σ, which is more than the cut-off radius

Rc of 2.5σ. This prevents any unrealistic interactions a particle

near the bottom wall could have had with another particle near

the top wall due to the periodic boundary conditions in the ver-

tical direction. Alternatively, one can also have a wall of 2.5 σ

thick on the top and the bottom face without periodic bound-

ary conditions in the vertical direction but this would involve

using a greater number of artificial particles. In the simulations,

flow has been induced in the positive x-direction by using a

gravity field g, which is essentially applied by applying a con-

stant force Fx to all the particles in the positive x-direction.

Now, this force may be applied to the particles and transmitted

to the background fluid or alternatively the gravity field may

just be applied to the background fluid through the force term

in the update of the velocities without using it in the update

of the positions. In either approach, similar velocity profiles

are obtained. Here, we present the results for the case where

the force Fx is applied to the particles and transmitted to the

background fluid.

In the simulation results that we have presented in this

section, we have non-dimensionalized the density, veloc-

ity, and temperature profiles. The density profile has been

non-dimensionalized using the bulk density ρbulk , which is

FIG. 4. Comparison of the mean squared displacement of the non-interacting

particles using the result from the derivation, i.e., Eq. (32) with simulations

for ξ′/ξ = 1. The colored dotted lines are simulation results, the colored solid

lines are the analytical approximations from the derivation, and the black solid

line is for a standard Brownian dynamics simulation.

essentially the ratio of the total mass of all particles to the total

volume of the box. It is important to note that the density of the

artificial particles within the channel is the same as the density

of the real particles in the channel, which is equal to ρbulk . The

velocity profile is calculated by dividing the box into 26 slabs

and measuring the velocities of all the particles within each

slab. We are mainly interested in the component of the veloc-

ity in the direction of the flow, which in our simulations was

the positive x-direction. So, for each slab, the distribution of

x-component of the velocities is calculated from a histogram,

which is populated by the x-component of the velocities of all

the particles in that slab. We run the simulation for 107 time

steps and use the last 9 × 106 time steps for populating the

histogram for measurement of the velocity distribution.

The mean of the velocity distribution generated by the

histograms of each slab is then assigned as the velocity asso-

ciated with that slab, which is how each point on the velocity

profiles shown in this section has been calculated. We have

then non-dimensionalized the velocity profile thus generated

using the basis set units. The temperature is calculated from

the standard deviation of the velocity distributions generated

by the histogram of each slab, as we expect a Maxwellian dis-

tribution of the velocities which entails a normal distribution

of each of the velocity components with a standard deviation

of
√

kBT/m. We have then non-dimensionalized this temper-

ature profile with the desired temperature T0, which was an

input to the simulations.

For the sake of comparison, we have also performed sim-

ilar simulations with a commercial CFD package COMSOL

Multiphysics 5.0.48 For a proper comparison, it is impor-

tant that we must input the correct physical properties of

our test fluid, particularly the viscosity of the fluid. So we

performed independent bulk shear-flow simulations with our

particle-based model based on the Lees-Edwards method,49

whereby we modify the periodic boundary conditions as fol-

lows. Assume that in a box of height Ly, the top wall moves

with a velocity of γ̇Ly/2 in the x-direction and the bottom wall

moves with a velocity of −γ̇Ly/2 in the x-direction. When a

particle crosses the bottom boundary and arrives at the top of

the box, it is displaced by γ̇Lt in the x-direction and the back-

ground velocity at the position of the particle is augmented

by γ̇L. Alternatively, if a particle crosses the top boundary

and arrives at the bottom of the box, it is displaced by −γ̇Lt

in the x-direction and the background velocity at the posi-

tion of the particle is augmented by −γ̇L. Moreover, during

the force calculation, if a particle interacts with its neighbor

across the boundary, then the background velocity of the neigh-

boring particle is adjusted by ±γ̇L depending on whether the

neighbor is in the bottom or the top of the box. The viscos-

ity from these simulations is then calculated as the ratio of

the average stress Sxy based on Eq. (26) and the shear rate

γ̇. This is the particle-contribution of the shear viscosity to

which we must add the background fluid contribution, which

we will discuss later. We fitted the flow curve thus obtained

from these simulations with the Carreau equation,50 given as

follows:

η − η∞
η0 − η∞

=

[
1 + (λγ̇)2

] n−1
2 , (34)
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FIG. 5. Flow curve obtained from shear flow simulations for different values

of ξ′/ξ and τ = 3 × 10–3 σ2/D0 based on the Lees-Edwards method shown

with the colored symbols and the fit using the Carreau model shown with the

colored dotted lines.

where η0 is the zero shear rate viscosity, η∞ is the infinite

shear viscosity, λ is a parameter with units of time, and n is

a dimensionless parameter. The shear viscosity without the

infinite shear viscosity component (η − η∞) is fitted with the

Carreau model optimizing the three parameters, i.e., (η0−η∞),

λ, and n, as shown in Fig. 5.

Approximating the infinite shear viscosity η∞ as the back-

ground fluid viscosity, an estimate for η∞ can be obtained in

terms of our model parameters as follows:

η∞ =
R2

c ρ
#ξ ′

28
. (35)

We have performed our flow simulations through a chan-

nel using a constant gravity field g = Fx/m, which must be

translated to the analogous pressure drop per unit length of

the channel for the corresponding COMSOL simulations. The

relation between the pressure drop per unit length ∆P/Lx and

our model parameters has been defined as follows:

∆P/Lx = Fx ρ
#. (36)

Furthermore, we have assumed Stokes flow for the

COMSOL simulations, thereby neglecting inertial terms from

the Navier-Stokes equations. In Fig. 6, we have shown the

comparison of the results for the flow of our test system of a

star polymer solution through a rectangular channel obtained

from the simulations based on our model with the results from

the corresponding COMSOL simulations for a shear thinning

fluid obeying the Carreau model. The three sub-figures (a)–(c)

FIG. 6. Dimensionless density, velocity, and temperature profiles for different parameter values using the Morris boundary conditions. The velocity profile

shown with circles is obtained from particle based simulations based on our model and the solid line shows the results from COMSOL simulations for a shear

thinning fluid following the Carreau equation. (a) ξ′/ξ = 1 for τ = 3 × 10–3 σ2/D0. (b) ξ′/ξ = 2 for τ = 3 × 10–3 σ2/D0. (c) ξ′/ξ = 5 for τ = 3 × 10–3

σ2/D0.
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of Fig. 6 show the results of the simulations performed for

three different values of ξ ′, viz., 1, 2, and 5, respectively, for

a constant value of τ = 3 × 10–3 σ2/D0 and maintaining a

constant gravity field g = Fx/m = 133.4D2
0
/σ3 by scaling

forces Fx proportional to ξ ′. Each of the sub-figures of Fig. 6

shows the dimensionless density profile on the left, the dimen-

sionless velocity profile in the center, and the dimensionless

temperature profile on the right.

As can be seen from Fig. 6, the temperature is uniform

throughout the cross section and is close to its expected value

that was set as an input value T0, which is the same value

used for normalization. The density profiles correspond to the

test system that we have employed. We see a layered fluid

owing to the nature of the potential and the presence of a hard

wall. This was to be expected looking at the radial distribu-

tion function from Fig. 1 and the hard wall potential shown in

Eq. (18). The dimensionless velocity profiles agree satisfacto-

rily with the profiles obtained from the COMSOL simulations

for several parameter values. It is also interesting to note that

despite the pronounced density fluctuations, we have obtained

a rather smooth velocity profile. This is because the cut-offs for

the normalized weight functions wij and f ij used to calculate

the average local properties and their gradients, respectively,

have been chosen in such a way that we have about 15 par-

ticles within the cut-off, which effectively smooths out the

fluctuations due to the density profile.

It must be pointed out that the range of values for the

parameters we have chosen is in such a way that the maxi-

mum particle Reynolds number is less than 1. An estimate for

the particle Reynolds number can be obtained by solving the

Navier-Stokes equation for a Newtonian fluid with a viscosity

νwhich is related to the parameters by Eq. (23). The maximum

velocity in the channel of width Ly for the flow of a Newtonian

fluid with viscosity ν under the influence of a gravity field g is

as follows:

vmax =

gL2
y

8ν
. (37)

Accordingly, the maximum particle Reynolds number is as

follows:

Remax =

σgL2
y

8ν2
. (38)

Using Eqs. (38) and (23), we arrive at the following condition

on the parameters:

98
σgτ2

R2
c

(

Ly

Rc

)2

< 1. (39)

In other words, we get an upper bound of 5.47 × 10−3σ2/D0

for the value of τ. Accordingly, we have used a value of

3 × 10−3σ2/D0 for the channel flow simulations.

V. CONCLUSION AND SCOPE
FOR FURTHER RESEARCH

In this paper, we have presented a technique for modeling

flow of highly frictional soft matter systems in the presence of

solid interfaces. The technique is largely based on a Galilean

invariant coupling algorithm,26 which we have modified and

then thoroughly analyzed to its further understanding. We

have demonstrated the relationship of the modelparameters

with the dynamic properties of the system. Furthermore, we

have also presented an iterative procedure to theoretically

predict the effect of the friction coefficients on the mean

squared displacement for a simple case of non-interacting

particles, which can be used to then determine the values

of the system parameters. We have presented the model in

a very generalized manner so that it may be applied to

a wide range of systems by tuning the parameters of the

model.

It must however be pointed out that for highly viscous

systems, the time step required for the velocity propagator

introduced by the Galilean invariant algorithm can be much

smaller than the time step required for the position updates

based on Brownian dynamics. Thus, for such systems, it might

be practical to use a multiscale approach where two different

time steps are used for the position and velocity updates. A

large number of velocity updates can be carried out before the

positions of the particles change significantly. Alternatively, a

steady state solution may be calculated for the velocities every

time the positions are updated.

Furthermore, it must be noted that although using the

particles as the nodes on which the background flow field

is discretized makes the model computationally efficient, the

resolution of the background fluid is actually limited by the

concentration of the particles in the system. For instance, in

the case of a star polymer solution, the concentration of the

polymers fixes the resolution of the background fluid because

the particles play dual roles of representing the star polymers

and also being the node points on which the background flow

field is discretized. This may be resolved by having a model

with two types of particles—ones representing the polymer

particles and the others representing the background fluid, but

for this case, correctly describing the interaction between the

two types of particles is crucial.
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APPENDIX: MEAN SQUARED DISPLACEMENT
OF NON-INTERACTING PARTICLES

In this section, we present the zeroth order calculation for

mean squared displacement mentioned in Sec. IV A. For the

zeroth order calculation, we neglect the second term in the

integrand on the right hand side of Eq. (31). Substituting the

result into Eq. (29) and integrating, we get the displacement

as

∆Ri(t) = vi(0)

∫ t

0

dt ′e−t′/τ
+

∫ t

0

dt ′
∫ t′

0

dt ′′e−(t′−t′′)/τ

×
N

∑

j=1, j,i

dWv
ij
(t ′′)

dt
+

∫ t

0

dt ′
dWR

i (t ′)

dt
. (A1)
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Making use of
∫ t

0
dt′

∫ t′

0
dt′′=

∫ t

0
dt′′

∫ t

t′′
dt′ and performing some integrations, we get

∆Ri(t) = τvi(0)
(

1 − e−t/τ
)

+ τ

∫ t

0

dt ′
(

1 − e−(t−t′)/τ
)

N
∑

j=1, j,i

dWv
ij
(t ′)

dt
+

∫ t

0

dt ′
dWR

i (t ′)

dt
. (A2)

Squaring and averaging the above equation over the ensemble, and noting that the random variables have a zero mean and noting

further that the random variables associated with the positions and velocities are uncorrelated with each other as defined in

Eq. (12), we get

〈∆Ri(t)
2〉 = τ2

(

1 − e−t/τ
)2
〈vi(0)2〉 + τ2

∫ t

0

dt ′
∫ t

0

dt ′′
{

(1 − e−(t−t′)/τ)(1 − e−(t−t′′)/τ)

N
∑

j=1,j,i

N
∑

k=1,k,i

〈

dWv
ij
(t ′)

dt
.
dWv

ik
(t ′′)

dt

〉 }

+

∫ t

0

dt ′
∫ t

0

dt ′′
〈

dWR
i (t ′)

dt
.
dWR

i (t ′′)

dt

〉

. (A3)

In order to evaluate this equation further, we make use of

〈vi(0)2〉 = 3kBT

mi

, (A4)

〈

dWv
ij
(t ′)

dt
.
dWv

ik
(t ′′)

dt

〉

=

6kBT

mi

fij

τ
δjkδ(t

′ − t ′′), (A5)

〈

dWR
i (t ′)

dt
.
dWR

i (t ′′)

dt

〉

=

6kBT

ξi
δ(t ′ − t ′′). (A6)

Here we have used that fact the random terms at different times

are uncorrelated, in which case δt′t′′/dt = δ(t ′− t ′′). Using the

definition of mass given in Eq. (14), and simplifying, we obtain

the expression for the mean squared displacement based on our

zeroth iteration as follows:

〈

∆Ri(t)
2
〉

=

6kBT

ξ ′
i

[
t − τ(1 − e−t/τ)

]
+

6kBT

ξi
t. (A7)

After a sufficiently long time, i.e., t ≫ τ, we get

〈∆Ri(t)
2〉 =

6kBT

ξ ′
i

t +
6kBT

ξi
t. (A8)
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034901 (2009).
34S. Litvinov, M. Ellero, X. Hu, and N. A. Adams, Phys. Rev. E, 77, 066703

(2008).
35S. Litvinov, Q. Xie, X. Hu, N. Adams, and M. Ellero, Fluids, 1, 7

(2016).
36X. Hu and N. Adams, Phys. Fluids 18, 101702 (2006).
37K. Müller, D. A. Fedosov, and G. Gompper, J. Comput. Phys., 281, 301

(2015).
38I. O. Götze, H. Noguchi, and G. Gompper, Phys. Rev. E, 76, 046705

(2007).
39J. P. Morris, P. J. Fox, and Y. Zhu, J. Comput. Phys., 136, 214 (1997).
40M. Revenga, I. Zuniga, and P. Espanol, Comput. Phys. Commun., 121, 309

(1999).
41I. V. Pivkin and G. E. Karniadakis, J. Comput. Phys. 207, 114 (2005).
42J. Smiatek, M. P. Allen, and F. Schmid, Eur. Phys. J. E, 26, 115

(2008).
43L. Brookshaw, Proc. Astron. Soc. 6, 207 (1985).

44 For a homogeneous solution,
N
∑

j=1,j,i
w(Rij) =

∫
d3rρ#w(r)=ρ# , and hence,

N
∑

j=1
mw(Rij) = m *

,w(0) +
N
∑

j=1,j,i
w(Rij)+- = mρ#(1 + w(0)/ρ#), from which

the result follows.

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  134.94.122.86 On: Mon, 21 Nov

2016 06:37:31



194903-12 Ahuja, van der Gucht, and Briels J. Chem. Phys. 145, 194903 (2016)

45D. Vlassopoulos and G. Fytas, High Solid Dispersions (Springer, 2009),

pp. 1–54.
46M. Daoud and J. Cotton, J. Phys., 43, 531 (1982).
47J. T. Padding, E. Van Ruymbeke, D. Vlassopoulos, and W. J. Briels, Rheol.

Acta, 49, 473 (2010).

48Comsol, Multiphysics User Guide for COMSOL 5.0, 2014.
49A. Lees and S. Edwards, J. Phys. C: Solid State Phys., 5, 1921

(1972).
50R. Bird, W. Stewart, and E. Lightfoot, Transport Phenomena, Wiley

International Edition (Wiley, 2007).

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  134.94.122.86 On: Mon, 21 Nov

2016 06:37:31


