000821167 001__ 821167
000821167 005__ 20210129224817.0
000821167 0247_ $$2doi$$a10.1109/LED.2016.2582041
000821167 0247_ $$2ISSN$$a0741-3106
000821167 0247_ $$2ISSN$$a1558-0563
000821167 0247_ $$2WOS$$aWOS:000380330000001
000821167 037__ $$aFZJ-2016-06405
000821167 082__ $$a620
000821167 1001_ $$0P:(DE-Juel1)156277$$aLuong, Gia Vinh$$b0$$eCorresponding author
000821167 245__ $$aComplementary Strained Si GAA Nanowire TFET Inverter With Suppressed Ambipolarity
000821167 260__ $$aNew York, NY$$bIEEE$$c2016
000821167 3367_ $$2DRIVER$$aarticle
000821167 3367_ $$2DataCite$$aOutput Types/Journal article
000821167 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1481204282_21506
000821167 3367_ $$2BibTeX$$aARTICLE
000821167 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000821167 3367_ $$00$$2EndNote$$aJournal Article
000821167 520__ $$aIn this letter, we present complementary tunneling field-effect transistors (CTFETs) based on strained Si with gate all around nanowire structures on a single chip. The main focus is to suppress the ambipolar behavior of the TFETs with a gate-drain underlap. Detailed device characterization and demonstration of a CTFET inverter show that the ambipolar current is successfully eliminated for both pand n-devices. The CTFET inverter transfer characteristics indicate maximum separation of the high/low level with a sharp transition (high voltage gain) at a Vdd down to 0.4 V. In addition, high noise margin levels of 40% of the applied Vdd are obtained.
000821167 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000821167 588__ $$aDataset connected to CrossRef
000821167 7001_ $$0P:(DE-Juel1)164261$$aNarimani, K.$$b1$$ufzj
000821167 7001_ $$0P:(DE-Juel1)128639$$aTiedemann, Andreas$$b2$$ufzj
000821167 7001_ $$0P:(DE-Juel1)138772$$aBernardy, P.$$b3$$ufzj
000821167 7001_ $$0P:(DE-Juel1)128856$$aTrellenkamp, S.$$b4
000821167 7001_ $$0P:(DE-Juel1)128649$$aZhao, Q. T.$$b5$$ufzj
000821167 7001_ $$0P:(DE-Juel1)128609$$aMantl, S.$$b6$$ufzj
000821167 773__ $$0PERI:(DE-600)2034325-5$$a10.1109/LED.2016.2582041$$gVol. 37, no. 8, p. 950 - 953$$n8$$p950 - 953$$tIEEE electron device letters$$v37$$x1558-0563$$y2016
000821167 8564_ $$uhttps://juser.fz-juelich.de/record/821167/files/07493630.pdf$$yRestricted
000821167 8564_ $$uhttps://juser.fz-juelich.de/record/821167/files/07493630.gif?subformat=icon$$xicon$$yRestricted
000821167 8564_ $$uhttps://juser.fz-juelich.de/record/821167/files/07493630.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000821167 8564_ $$uhttps://juser.fz-juelich.de/record/821167/files/07493630.jpg?subformat=icon-180$$xicon-180$$yRestricted
000821167 8564_ $$uhttps://juser.fz-juelich.de/record/821167/files/07493630.jpg?subformat=icon-640$$xicon-640$$yRestricted
000821167 8564_ $$uhttps://juser.fz-juelich.de/record/821167/files/07493630.pdf?subformat=pdfa$$xpdfa$$yRestricted
000821167 909CO $$ooai:juser.fz-juelich.de:821167$$pVDB
000821167 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156277$$aForschungszentrum Jülich$$b0$$kFZJ
000821167 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164261$$aForschungszentrum Jülich$$b1$$kFZJ
000821167 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128639$$aForschungszentrum Jülich$$b2$$kFZJ
000821167 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138772$$aForschungszentrum Jülich$$b3$$kFZJ
000821167 9101_ $$0I:(DE-Juel1)PGI-8-PT-20110228$$6P:(DE-Juel1)128856$$aPGI-8-PT$$b4$$kPGI-8-PT
000821167 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128649$$aForschungszentrum Jülich$$b5$$kFZJ
000821167 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128609$$aForschungszentrum Jülich$$b6$$kFZJ
000821167 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000821167 9141_ $$y2016
000821167 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000821167 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000821167 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE ELECTR DEVICE L : 2015
000821167 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000821167 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000821167 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000821167 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000821167 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000821167 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000821167 920__ $$lyes
000821167 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000821167 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000821167 980__ $$ajournal
000821167 980__ $$aVDB
000821167 980__ $$aUNRESTRICTED
000821167 980__ $$aI:(DE-Juel1)PGI-9-20110106
000821167 980__ $$aI:(DE-82)080009_20140620