000821202 001__ 821202 000821202 005__ 20250129094403.0 000821202 020__ $$a978-3-95806-183-5 000821202 0247_ $$2Handle$$a2128/13020 000821202 0247_ $$2ISSN$$a1866-1807 000821202 037__ $$aFZJ-2016-06440 000821202 041__ $$aEnglish 000821202 1001_ $$0P:(DE-Juel1)138450$$aAdiga, Shilpa$$b0$$eCorresponding author$$gfemale$$ufzj 000821202 245__ $$aCrystal growth and scattering studies on two ferrites 000821202 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2016 000821202 300__ $$aIV, 150 S. 000821202 3367_ $$2BibTeX$$aBOOK 000821202 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$bbook$$mbook$$s1616053518_2515 000821202 3367_ $$2DataCite$$aOutput Types/Book 000821202 3367_ $$2ORCID$$aBOOK 000821202 3367_ $$01$$2EndNote$$aBook 000821202 3367_ $$2DRIVER$$abook 000821202 4900_ $$aSchriften des Forschungszentrums Jülich. Reihe Schlüsseltechnologien / Key Technologies$$v135 000821202 502__ $$aRWTH Aachen, Diss., 2015$$bDr.$$cRWTH Aachen$$d2015 000821202 520__ $$a$\textbf{(1) A detailed ferroelectric study of magnetite (Fe$_{3}$O$_{4}$}$) Multiferroics, consisting of both ferroelectric and ferromagnetic phases, have attracted scientic and technological interest due possible magnetoelectric coupling between thephases. Such materials are very rare though, as conventional ferroelectricity requires an empty d-shell, preventing the presence of magnetism. Among unconventional mechanisms leading to ferroelectricity, multiferroicity due to charge ordering (CO) is a strong candidate for practical applications. However, proven examples are very rare as of yet. The 120 K Verwey transition (T$_{V}$) in magnetite, reported in 1939, is the classical example for charge ordering. Despite controversies regarding the existence of CO, magnetite has been proposed as one of the CO-based multiferroics. Although early experiments already indicated for example a magnetoelectric effect, those studies were mainly focused on complex low temperature structure rather than possible multiferroicity. In order to study the ferroelectric properties of magnetite by dielectric spectroscopy, a new dielectric measurement set-up was built at the institute. After an introduction and the description of experimental techniques, this thesis begins with the presentation of our newly built dielectric set-up and of the performed test experiments to standardize measurements of the dielectric constant. The Verwey transition is very sensitive to oxygen stoichiometry. The oxygen stoichiometry was tuned by appropriate gas mixtures of CO$_{2}$ and CO or Ar(H$_{2}$)$_{4}$%. I first investigated appropriate ratios of CO$_{2}$ / Ar(H$_{2}$)$_{4}$% at high temperature on polycrystalline samples and confirmed the phase purity by x-ray diffraction. Verwey transition was characterized primarily by thermo-remanent magnetization and specific heat. The results obtained from the basic macroscopic analysis were used for the growth of high quality crystals by optical floating zone method. Proposed low temperature relaxor ferroelectric property of magnetite was studied by neutron and high energy X-ray diffuse scattering experiments. The observed weak diffuse scattering by neutron diffraction, which was absent in high energy X-ray studies, indicated that it is magnetic in origin. For the first time, a time resolved X-ray diffraction technique has been implemented to test the switchabilty of the polar structure by application of an electric field in magnetite. The observed change in the intensity of the Bragg reflection to its Friedel mate (reflection related by inversion symmetry) constitutes to the first microscopic proof of ferroic behavior of classical magnetite. $\textbf{(2) Study of various physical properties of oxygen deficient strontium ferrite (SrFeO$_{3- \delta}$)}$. Colossal magnetoresistance effect, i.e., the huge change in the electrical resistance by the application of magnetic field is a key to the next generation of magnetic memory devices. The oxygen deficient strontium ferrite (SrFeO$_{3- \delta}$, $\delta$=0-0.5) system exhibits [...] 000821202 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0 000821202 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x1 000821202 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x2 000821202 536__ $$0G:(DE-HGF)POF3-6213$$a6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)$$cPOF3-621$$fPOF III$$x3 000821202 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x4 000821202 693__ $$0EXP:(DE-H253)P-P09-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P09-20150101$$aPETRA III$$fPETRA Beamline P09$$x0 000821202 693__ $$0EXP:(DE-MLZ)DNS-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)DNS-20140101$$6EXP:(DE-MLZ)NL6S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eDNS: Diffuse scattering neutron time of flight spectrometer$$fNL6S$$x1 000821202 693__ $$0EXP:(DE-MLZ)SPODI-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)SPODI-20140101$$6EXP:(DE-MLZ)SR8a-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eSPODI: High resolution powder diffractometer$$fSR8a$$x2 000821202 8564_ $$uhttps://juser.fz-juelich.de/record/821202/files/Schluesseltech_135.pdf$$yOpenAccess 000821202 8564_ $$uhttps://juser.fz-juelich.de/record/821202/files/Schluesseltech_135.gif?subformat=icon$$xicon$$yOpenAccess 000821202 8564_ $$uhttps://juser.fz-juelich.de/record/821202/files/Schluesseltech_135.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000821202 8564_ $$uhttps://juser.fz-juelich.de/record/821202/files/Schluesseltech_135.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000821202 8564_ $$uhttps://juser.fz-juelich.de/record/821202/files/Schluesseltech_135.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000821202 8564_ $$uhttps://juser.fz-juelich.de/record/821202/files/Schluesseltech_135.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000821202 909CO $$ooai:juser.fz-juelich.de:821202$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000821202 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138450$$aForschungszentrum Jülich$$b0$$kFZJ 000821202 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0 000821202 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x1 000821202 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2 000821202 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x3 000821202 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x4 000821202 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0 000821202 9141_ $$y2016 000821202 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000821202 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000821202 920__ $$lyes 000821202 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0 000821202 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1 000821202 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2 000821202 9801_ $$aFullTexts 000821202 980__ $$abook 000821202 980__ $$aVDB 000821202 980__ $$aI:(DE-Juel1)JCNS-2-20110106 000821202 980__ $$aI:(DE-Juel1)PGI-4-20110106 000821202 980__ $$aI:(DE-82)080009_20140620 000821202 980__ $$aUNRESTRICTED 000821202 981__ $$aI:(DE-Juel1)JCNS-2-20110106 000821202 981__ $$aI:(DE-Juel1)PGI-4-20110106